Jacques van Helden Jacques.van.Heldenulb.ac.be - PowerPoint PPT Presentation

1 / 4
About This Presentation
Title:

Jacques van Helden Jacques.van.Heldenulb.ac.be

Description:

coloring. Matrix. viewer. Processing. Clusters, Tree. Ordering ... Coloring (optional) Adapted from Gilbert et al. (2000). Trends Biotech. 18(Dec), 487-495. ... – PowerPoint PPT presentation

Number of Views:124
Avg rating:3.0/5.0
Slides: 5
Provided by: jacquesv8
Category:

less

Transcript and Presenter's Notes

Title: Jacques van Helden Jacques.van.Heldenulb.ac.be


1
Multivariate analysisSummary
  • Statistics Applied to Bioinformatics

2
Typical questions in multivariate analysis
  • No criterion variable
  • Can the objects be separated in distinct classes
    on the basis of the variables ? ? Cluster
    analysis
  • Which variables, or combiations of variables
    (factors), are the most explanatory for the
    differences between objects ? ? Factor
    analysis
  • Quantitative criterion variable
  • Is the criterion variable correlated with the
    predictor variables ? ? Correlation analysis
  • Can we predict the value of the criterion
    variable on the basis of the predictor variables
    ? ? Regression analysis
  • Nominal criterion variable
  • Can we predict the value of the criterion
    variable on the basis of the predictor variables
    ? ? Discriminant analysis

3
Flowchart of the approaches in multivariate
analysis
Principal component analysis
Cluster analysis
Clusters
none
criterionvariable ?
multivariate table
Regression analysis
Predicted value
quantitative
Discriminant analysis
Predicted class
nominal
Multidimensionalscaling
distance matrix
4
Adapted from Gilbert et al. (2000). Trends
Biotech. 18(Dec), 487-495.
Raw data
Visualization
Processing
  • Matrix
  • n rows
  • p columns
  • coloring
  • Ordering (optional)
  • row swapping
  • column swapping

Matrix viewer
  • Dendrogram
  • rooted
  • unrooted
  • n leaves

Tree drawing
Clusters,Tree
Clustering
  • Multivariate data matrix
  • n objects
  • p variables

Pairwise distance measurement
  • Distance matrix
  • n x n distances
  • symmetrical

Coloring (optional)
  • Euclidian space
  • 1D to 3D
  • n dots
  • coloring
  • dot volume
  • interactive
  • Multidimensional scaling
  • PCoA
  • spring embedding

Space explorer (VRML)
  • Coordinates
  • n elements
  • d dimensions

Principal component analysis
  • Normalization
  • mean
  • variance
  • covariance
  • Normalized table
  • n elements
  • p dimensions

Reduction to significant dimensions
Write a Comment
User Comments (0)
About PowerShow.com