Title: Heating from Reconnection Quantified
1Heating from ReconnectionQuantified
- Dana LongcopeMontana State University
2Acknowledgments
- Erik Aver
- Jonathan Cirtain
- Charles Kankelborg
- Dave McKenzie
- Jason Scott
- Alexei Pevtsov
- Robert Close
- Clare Parnell
- Eric Priest
- NASA grant NAG5-10489
- NSF grant ATM 97227
MSU
NSO Sac Peak
St. Andrews
3Reconnection Heating Theory
- Parker 1972, Parker1983
- Topological dissipation
- Tucker 1973, Levine 1974
- Dissipation _at_ current sheets
- Heyvaerts Priest 1984
- Taylor relaxn after QS evoln
- van Ballegooijen 1985
- Dissipation of turbulent structure
- Parker 1988, Cargill 1993, 1994,
- Nanoflares
- Longcope 1996, Aly Amari 1997
- QS Formation rapid elimination of current
sheets
(Parker 1972)
reconnection?
4Heating from Reconnection
Heating P ergs/sec
Reconnection ? magnetic dissipation
Prx ergs/sec
P Prx
Begging the question?
5Heating from Reconnection
Heating P ergs/sec
Reconnection ? flux transfer F
Mx/sec
Reconnection heating ?
P C F m
mgt0
6Reconnection Heating
P C F m
tD ltlt tev
Heyvaerts Priest 1984 Longcope 1996 Aly Amari
1997
P v
P Iqrx F
m 1
Units of constant Amps
7Reconnection Heating
P C F m
2. Resistive dissipation
Parker 1983, 1988 van Ballegooijen 1985
tD tev
P v2
P (F)2 / R
m 2
Units of constant Mhos
8Quantifying Heating
Pevtsov et al. 2003
ARs
XBPs
9Quantifying Reconnection
- What is F ?
- What is F ?
- Which field lines change?
- Where does the change occur?
Average Heating ? General setting assume avg.
field line is recycled once in time trcyc
10Quantifying Reconnection
Pevtsov et al. 2003
ARs
XBPs
11Whither Withbroe Noyes?
Quiet Sun ltBzgt 10 Mx/cm2
(Lites 2002)
? Fx 2 x 104 ergs/sec/cm2
(Pevtsov et al. 2003)
F Fx / c 3 x 105 ergs/sec/cm2
(Withbroe Noyes 1977)
c 0.1
12Specific Case AR 9574
Longcope et al. 2004
PHOTOSPHERE
2001 Aug 11, 135
CORONA
- Emerging AR
- Interconnections
- How much
- reconnection?
movie
TRACE 171A (106 K Plasma)
13P-spheric flux sources
emergence begins
14Coronal Model
Interconnecting flux
separator
15Finding all the loops
Peaks in a slit
16Separatrices enclose loops
17Reconnection observed
Y Flux in potl model
(Longcope et al. 2004)
24 hour delay
Burst of reconnection 1016 Mx/sec 100 MV
18Energy release
I 3 x 1010 A
Transfer flux DF Liberate energy DW
DW DF Iqrx
Dissipation? (NO)
19Quiet Sun Case XBP1
TRACE SOI/MDI observations 6/17/98 (Kankelborg
Longcope 1999)
20Quantifying Reconnection
- Poles
- Converging v 218 m/sec
- Potential field
- - bipole
- - changing
- ? 1.6 MegaVolts
- (on separator)
21Surveys of XBPs
- Archival SOHO data
- EIT MDI images
- Visually ID XBPs
- in EIT 195A
- Extract bipole
- props from 12 MDI
- images (_at_15min)
(Longcope et al. 2000, Aver Longcope 2005)
22Surveys of XBPs
149 XBPs
vr
15o
v
d
(Aver Longcope 2005)
F
F( FF-)/2
td/vr
23(Aver Longcope 2005)
P
Diverging bipoles No Corrn
B010 G
Converging bipoles P strongly correlates w/
reconnn rate proxies
1 G
P
Iqrx1011 A
F/t
vrF
24Converging vs. Diverging
convergence (closing)
divergence (opening)
time
reconnected flux
25Coronal recycling time
(Close, Parnell, Longcope Priest 2004)
240 Mm x 240 Mm quiet Sun region
- Identify sources
- Coronal field from
- potential extrapn
50 MDI m-grams _at_ 15 min
26Coronal recycling time
Fa p-spheric Flux in source a
yi interconn-ecting flux in domain i
Flux balance
All flux goes somewhere
Change over Dt
submergence/emergence
Coronal reconnection
27Coronal recycling time
Recycling by emergence or submegence
15 hours
(cf. Hagenaar et al. 2003)
3 hours 1.4 hours
Recycling by reconnection
2 diff. methods of elimating Si
28Summary
- Heating of individual structures P F
- Suggests Quasi-static reconnection heating
- P Iqrx F with Iqrx 2 x 105 trcyc
- Emerging AR (9574)
- Reconnection delayed by 24 hours
- F 260 MV, I 3 x 1010 A
- Heating after reconnection
- XBPs F 1 MV, I 109 A
- Convergence/divergence dichotemy
- trcyc 2 hours