Geometric Optimization Problems in Computer Vision - PowerPoint PPT Presentation

About This Presentation
Title:

Geometric Optimization Problems in Computer Vision

Description:

Geometric Optimization Problems in Computer Vision – PowerPoint PPT presentation

Number of Views:59
Avg rating:3.0/5.0
Slides: 125
Provided by: richard583
Category:

less

Transcript and Presenter's Notes

Title: Geometric Optimization Problems in Computer Vision


1
Geometric Optimization Problems in Computer Vision
2
X
x1
x2
x3
3
(No Transcript)
4
(No Transcript)
5
(No Transcript)
6
Computation of the Fundamental Matrix
7
(No Transcript)
8
(No Transcript)
9
(No Transcript)
10
(No Transcript)
11
(No Transcript)
12
(No Transcript)
13
b
Span(A)
Ax
O
14
(No Transcript)
15
(No Transcript)
16
1D Gauss-Newton (Newton) iteration.
17
1D Gauss-Newton (Newton) iteration (failure)
18
(No Transcript)
19
(No Transcript)
20
(No Transcript)
21
(No Transcript)
22
(No Transcript)
23
(No Transcript)
24
x1
x0
x2
First step minimizes on line. Second step
minimizes function in the plane.
25
(No Transcript)
26
(No Transcript)
27
(No Transcript)
28
(No Transcript)
29
(No Transcript)
30
X0
31
(No Transcript)
32
Subdivision search
33
(No Transcript)
34
(No Transcript)
35
(No Transcript)
36
(No Transcript)
37
(No Transcript)
38
(No Transcript)
39
(No Transcript)
40
Gradient Descent
41
Conjugate Gradient
42
Newton
43
Levenberg-Marquardt
44
Gauss-Newton (without line search)
45
Newton
Conjugate gradient
Gradient descent
Model 1
46
Conjugate gradient
Gauss-Newton
Gradient descent
Model 2
Levenberg
Newton
47
Conjugate gradient
Gauss-Newton
Gradient descent
Model 3
Levenberg
Newton
48
Conjugate gradient
Gauss-Newton
Gradient descent
Model 4
Levenberg
Newton
49
Conjugate gradient
Gauss-Newton
Gradient descent
Model 5
Levenberg
Newton
50
Conjugate gradient
Gauss-Newton
Gradient descent
Model 6
Levenberg
Newton
51
(No Transcript)
52
Bundle-adjustment
53
(No Transcript)
54
(No Transcript)
55
(No Transcript)
56
(No Transcript)
57
(No Transcript)
58
(No Transcript)
59
(No Transcript)
60
(No Transcript)
61
(No Transcript)
62
(No Transcript)
63
(No Transcript)
64
(No Transcript)
65
(No Transcript)
66
(No Transcript)
67
(No Transcript)
68
(No Transcript)
69
(No Transcript)
70
(No Transcript)
71
(No Transcript)
72
(No Transcript)
73
(No Transcript)
74
(No Transcript)
75
(No Transcript)
76
(No Transcript)
77
(No Transcript)
78
(No Transcript)
79
(No Transcript)
80
(No Transcript)
81
(No Transcript)
82
(No Transcript)
83
Robust line estimation - RANSAC
Fit a line to 2D data containing outliers
  • There are two problems
  • a line fit which minimizes perpendicular distance
  • a classification into inliers (valid points) and
    outliers

Solution use robust statistical estimation
algorithm RANSAC (RANdom Sample Consensus)
Fishler Bolles, 1981
84
RANSAC robust line estimation
  • Repeat
  • Select random sample of 2 points
  • Compute the line through these points
  • Measure support (number of points within
    threshold distance of the line)
  • Choose the line with the largest number of
    inliers
  • Compute least squares fit of line to inliers
    (regression)

85
(No Transcript)
86
(No Transcript)
87
(No Transcript)
88
(No Transcript)
89
(No Transcript)
90
(No Transcript)
91
(No Transcript)
92
(No Transcript)
93
(No Transcript)
94
Algorithm summary RANSAC robust F estimation
  • Repeat
  • Select random sample of 7 correspondences
  • Compute F (1 or 3 solutions)
  • Measure support (number of inliers within
    threshold distance of epipolar line)
  • Choose the F with the largest number of inliers

95
Correlation matching results
  • Many wrong matches (10-50), but enough to
    compute F

96
Correspondences consistent with epipolar geometry
97
Computed epipolar geometry
98
(No Transcript)
99
(No Transcript)
100
(No Transcript)
101
(No Transcript)
102
(No Transcript)
103
(No Transcript)
104
(No Transcript)
105
(No Transcript)
106
(No Transcript)
107
(No Transcript)
108
(No Transcript)
109
(No Transcript)
110
(No Transcript)
111
(No Transcript)
112
(No Transcript)
113
(No Transcript)
114
(No Transcript)
115
(No Transcript)
116
(No Transcript)
117
(No Transcript)
118
(No Transcript)
119
(No Transcript)
120
h
121
(No Transcript)
122
(No Transcript)
123
(No Transcript)
124
(No Transcript)
Write a Comment
User Comments (0)
About PowerShow.com