Title: Geometric Optimization Problems in Computer Vision
1Geometric Optimization Problems in Computer Vision
2X
x1
x2
x3
3(No Transcript)
4(No Transcript)
5(No Transcript)
6Computation of the Fundamental Matrix
7(No Transcript)
8(No Transcript)
9(No Transcript)
10(No Transcript)
11(No Transcript)
12(No Transcript)
13b
Span(A)
Ax
O
14(No Transcript)
15(No Transcript)
161D Gauss-Newton (Newton) iteration.
171D Gauss-Newton (Newton) iteration (failure)
18(No Transcript)
19(No Transcript)
20(No Transcript)
21(No Transcript)
22(No Transcript)
23(No Transcript)
24x1
x0
x2
First step minimizes on line. Second step
minimizes function in the plane.
25(No Transcript)
26(No Transcript)
27(No Transcript)
28(No Transcript)
29(No Transcript)
30X0
31(No Transcript)
32Subdivision search
33(No Transcript)
34(No Transcript)
35(No Transcript)
36(No Transcript)
37(No Transcript)
38(No Transcript)
39(No Transcript)
40Gradient Descent
41Conjugate Gradient
42Newton
43Levenberg-Marquardt
44Gauss-Newton (without line search)
45Newton
Conjugate gradient
Gradient descent
Model 1
46Conjugate gradient
Gauss-Newton
Gradient descent
Model 2
Levenberg
Newton
47Conjugate gradient
Gauss-Newton
Gradient descent
Model 3
Levenberg
Newton
48Conjugate gradient
Gauss-Newton
Gradient descent
Model 4
Levenberg
Newton
49Conjugate gradient
Gauss-Newton
Gradient descent
Model 5
Levenberg
Newton
50Conjugate gradient
Gauss-Newton
Gradient descent
Model 6
Levenberg
Newton
51(No Transcript)
52Bundle-adjustment
53(No Transcript)
54(No Transcript)
55(No Transcript)
56(No Transcript)
57(No Transcript)
58(No Transcript)
59(No Transcript)
60(No Transcript)
61(No Transcript)
62(No Transcript)
63(No Transcript)
64(No Transcript)
65(No Transcript)
66(No Transcript)
67(No Transcript)
68(No Transcript)
69(No Transcript)
70(No Transcript)
71(No Transcript)
72(No Transcript)
73(No Transcript)
74(No Transcript)
75(No Transcript)
76(No Transcript)
77(No Transcript)
78(No Transcript)
79(No Transcript)
80(No Transcript)
81(No Transcript)
82(No Transcript)
83Robust line estimation - RANSAC
Fit a line to 2D data containing outliers
- There are two problems
- a line fit which minimizes perpendicular distance
- a classification into inliers (valid points) and
outliers
Solution use robust statistical estimation
algorithm RANSAC (RANdom Sample Consensus)
Fishler Bolles, 1981
84RANSAC robust line estimation
- Repeat
- Select random sample of 2 points
- Compute the line through these points
- Measure support (number of points within
threshold distance of the line) - Choose the line with the largest number of
inliers - Compute least squares fit of line to inliers
(regression)
85(No Transcript)
86(No Transcript)
87(No Transcript)
88(No Transcript)
89(No Transcript)
90(No Transcript)
91(No Transcript)
92(No Transcript)
93(No Transcript)
94Algorithm summary RANSAC robust F estimation
- Repeat
- Select random sample of 7 correspondences
- Compute F (1 or 3 solutions)
- Measure support (number of inliers within
threshold distance of epipolar line) - Choose the F with the largest number of inliers
95Correlation matching results
- Many wrong matches (10-50), but enough to
compute F
96Correspondences consistent with epipolar geometry
97Computed epipolar geometry
98(No Transcript)
99(No Transcript)
100(No Transcript)
101(No Transcript)
102(No Transcript)
103(No Transcript)
104(No Transcript)
105(No Transcript)
106(No Transcript)
107(No Transcript)
108(No Transcript)
109(No Transcript)
110(No Transcript)
111(No Transcript)
112(No Transcript)
113(No Transcript)
114(No Transcript)
115(No Transcript)
116(No Transcript)
117(No Transcript)
118(No Transcript)
119(No Transcript)
120h
121(No Transcript)
122(No Transcript)
123(No Transcript)
124(No Transcript)