Kinematics Primer - PowerPoint PPT Presentation

1 / 32
About This Presentation
Title:

Kinematics Primer

Description:

Ex: Two-Link Arm (2D) Configuration. Link 1: Box (6,1); bend 45 deg ... Exercises. Study the references of Rodrigues formula. Verify equivalence of these 2 ref's ... – PowerPoint PPT presentation

Number of Views:72
Avg rating:3.0/5.0
Slides: 33
Provided by: jmc9
Category:

less

Transcript and Presenter's Notes

Title: Kinematics Primer


1
Kinematics Primer
  • Jyun-Ming Chen

2
Contents
  • General Properties of Transform
  • 2D and 3D Rigid Body Transforms
  • Representation
  • Computation
  • Conversion
  • Transforms for Hierarchical Objects

3
Math Primer
4
Kinematic Modeling
  • Two interpretations of transform
  • Global
  • An operator that displaces a point (or set of
    points) to desired location
  • Local
  • specify where objects are placed in WCS by moving
    the local frame
  • Next, explain these concepts via 2D translation
  • Verify that the same holds for rotation, 3D,

5
Ex 2D translation
The transform, as an operator, takes p to p,
thus changing the coordinate of p
Tr(t) p p
p
Tr(t)
6
Ex 2D translation (cont)
The transform moves the xy-frame to xy-frame
and the point is placed with the same local
coordinate. To determine the corresponding
position of p in xy-frame
Tr(t)
7
Properties of Transform
  • Transforms are usually not commutable
  • TaTb p ? TbTa p (in general)
  • Rigid body transform
  • the ones preserving the shape
  • Two types
  • rotation rot(n,q)
  • translation tr(t)

Rotation axis n passes thru origin
8
Rigid Body Transform
  • transforming a point/object
  • rot(n,q) p tr(t) p
  • not commutable
  • rot(n,q) tr(t) p ? tr(t) rot(n,q) p
  • two interpretations (local vs. global axes)

9
2D Kinematics
  • Rigid body transform only consists of
  • Tr(x,y)
  • Rot(z,q)
  • Computation
  • 3x3 matrix is sufficient

10
3D Kinematics
  • Consists of two parts
  • 3D rotation
  • 3D translation
  • The same as 2D
  • 3D rotation is more complicated than 2D rotation
    (restricted to z-axis)
  • Next, we will discuss the treatment for spatial
    (3D) rotation

11
3D Rotation Representations
  • Axis-angle
  • 3X3 rotation matrix
  • Unit quaternion
  • Learning Objectives
  • Representation
  • Perform rotation
  • Composition
  • Interpolation
  • Conversion among representations

12
Axis-Angle Representation
  • Rot(n,q)
  • n rotation axis (global)
  • q rotation angle (rad. or deg.)
  • follow right-handed rule
  • Perform rotation
  • Rodrigues formula
  • Interpolation/Composition poor
  • Rot(n2,q2)Rot(n1,q1) ? Rot(n3,q3)

13
Rodrigues Formula
r
v
v
vR v
14
Rodrigues (cont)
  • http//mesh.caltech.edu/ee148/notes/rotations.pdf
  • http//www.cs.berkeley.edu/ug/slide/pipeline/assi
    gnments/as5/rotation.html

15
Rotation Matrix
  • Meaning of three columns
  • Perform rotation linear algebra
  • Composition trivial
  • orthogonalization might be required due to FP
    errors
  • Interpolation ?

16
Gram-Schmidt Orthogonalization
  • If 3x3 rotation matrix no longer orthonormal,
    metric properties might change!

Verify!
17
Quaternion
  • A mathematical entity invented by Hamilton
  • Definition

18
Quaternion (cont)
  • Operators
  • Addition
  • Multiplication
  • Conjugate
  • Length

19
Unit Quaternion
  • Define unit quaternion as follows to represent
    rotation
  • Example
  • Rot(z,90)?

Why unit? DOF point of view!
20
Unit Quaternion (cont)
  • Perform Rotation
  • Composition
  • Interpolation

21
Example
p(2,1,1)
Rot(z,90)
22
Example (cont)
23
Example
y
x,x
z,y
z
24
(No Transcript)
25
Spatial Displacement
  • Any displacement can be decomposed into a
    rotation followed by a translation
  • Matrix
  • Quaternion

26
Hierarchical Objects
  • For modeling articulated objects
  • Robots, mechanism,
  • Goals
  • Draw it
  • Given the configuration, able to compute the
    (global) coordinate of every point on body

27
Ex Two-Link Arm (2D)
  • Configuration
  • Link 1 Box (6,1) bend 45 deg
  • Link 2 Box (8,1) bend 30 deg
  • Goals
  • Draw it
  • find tip position

28
Ex Two-Link Arm
Tip Position
T for link1 Rot(z,45) Tr(0,6) Rot(z,30) T
for link2 Rot(z,45)
29
Ex Two-Link Arm
Thus, two views are equivalent The latter might
be easier to visualize.
30
Ex Two-Link Arm (VRML syntax)
  • Transform
  • rotation 0 0 1 45
  • children
  • Link1
  • Transform
  • translation 0 0 6
  • children
  • Transform
  • rotation 0 0 1 30
  • children
  • Link2

31
Classes in Javax.vecmath
  • Conversion Methods

32
Exercises
  • Study the references of Rodrigues formula
  • Verify equivalence of these 2 refs
  • Compute inverse Rodrigues formula
Write a Comment
User Comments (0)
About PowerShow.com