Title: CS 140 Lecture 9 Sequential Networks
1CS 140 Lecture 9Sequential Networks
- Professor CK Cheng
- CSE Dept.
- UC San Diego
2Sequential Networks
Combinational
D
B
C
A
CLK
CLK
- Components F-Fs
- Specification
- Implementation Excitation Table
3Specification
- Finite State Machine
- Input Output Relation
- State Diagram
- State Table
- Circuit
- Logic Diagram
- Netlist
- Boolean Expression
4Netlist ? State Table ? State Diagram? Input
Output Relation
y(t) Q1(t)Q0(t) Q0(t1) D0(t)
x(t)Q1(t) Q1(t1) D1(t) x(t) Q0(t)
5Netlist ? State Table ? State Diagram? Input
Output Relation
x
D1
Q1
Q0
Q
D
Q
y
Q
D
Q0
Q1
Q
D0
Clk
y(t) Q1(t)Q0(t) Q0(t1) D0(t)
x(t)Q1(t) Q1(t1) D1(t) x(t) Q0(t)
6Logic Diagram gt State Table
y(t) Q1(t) Q0(t) Q0(t1) D0(t) x(t)
Q1(t) Q1(t1) D1(t) x(t) Q0(t)
State table
input
Let S0 00 S1 01 S2 10 S3 11
x0 x1
PS
0 0 0 1 1 0 1 1
00, 0 10, 0 10, 0 10, 0 00, 0 11, 0 10, 1
11, 1
Q1(t) Q0(t) Q1(t1) Q0(t1), y(t)
Remake the state table using symbols instead of
binary code , e.g. 00
7State Table gt State Diagram
Example Output sequence
8Example with T Flip-Flops
y(t) Q1(t)Q0(t) Q0(t1) T0(t) x(t)
Q1(t) Q1(t1) T1(t) x(t) Q0(t)
9Logic Diagram gt Excitation Table gt State Table
y(t) Q1(t)Q0(t) T0(t) x(t) Q1(t) T1(t)
x(t) Q0(t) Q0(t1) T0(t) Q0(t)T0(t)Q0(t) Q
1(t1) T1(t) Q1(t)T1(t)Q1(t)
Excitation Table
10Excitation Table gtState Table gt State Diagram
State Assignment S0 00 S1 01 S2 10 S3 11
1/1
0/0
0/1
S0
S1
S3
0, 1/0
1/0
S2
1/0
0/0
11Excitation Table gtState Table gt State Diagram
Example Output sequence
12Implementation State Diagram gt State Table gt
Netlist
Pattern Recognizer A sequential machine has a
binary input x in a,b. For x(t-2, t) aab, the
output y(t) 1, otherwise y(t) 0.
b/1
b/0
S1
S0
a/0
a/0
S2
a/0
b/0
13State Diagram gt State Table with State Assignment
State Assignment S0 00 S1 01 S2 10
Q1(t1)Q0(t1), y
a 0 b 1
14State Table gt Excitation Table
15Excitation Table gt Boolean Expression
D1(t) xQ0 xQ1 D0 (t) Q1Q0 x y Q1x
16Q0
Q1
D0
Q
Q0
D
x
Q
Q1
y
x
D1
Q
D
Q0
Q
Q1
x
D1(t) xQ0 xQ1 D0 (t) Q1Q0 x y Q1x
17Canonical Form Mealy and Moore Machines
x(t)
y(t)
Combinational Logic
CLK
C2
x(t)
y(t)
x(t)
C1
C2
y(t)
C1
CLK
CLK
18Canonical Form Mealy and Moore Machines
Moore Machine yi(t) fi(X(t), S(t)) Mealy
Machine yi(t) fi(S(t)) si(t1) gi(X(t),
S(t))
x(t)
x(t)
C1
C2
y(t)
C1
C2
y(t)
CLK
CLK
s(t)
s(t)
Moore Machine
Mealy Machine
19Finite State Machine Example
- Traffic light controller
- Traffic sensors TA, TB (TRUE when theres
traffic) - Lights LA, LB
20FSM Black Box
- Inputs CLK, Reset, TA, TB
- Outputs LA, LB
21FSM State Transition Diagram
- Moore FSM outputs labeled in each state
- States Circles
- Transitions Arcs
22FSM State Transition Diagram
- Moore FSM outputs labeled in each state
- States Circles
- Transitions Arcs
23FSM State Transition Table
24State Transition Table
Q1(t1) Q1(t)Ã… Q0(t) Q0(t1) Q1(t)Q0(t)TA
Q1(t)Q0(t)TB
25FSM Output Table
LA1 Q1 LA0 Q1Q0 LB1 Q1 LB0 Q1Q0
26FSM Schematic State Register
27Logic Diagram
28FSM Schematic Output Logic