Title: Phase separation effects in diluted magnetic semiconductors
1Phase separation effects in diluted magnetic
semiconductors
Tomasz DIETL Institute of Physics, Polish Academy
of Sciences Institute of Theoretical Physics,
Warsaw University
- collaborators
- T. Andrearczyk, P. Kossacki, J. Jaroszynski, M.
Sawicki Warsaw - F. Matsukura, H. Ohno Sendai
- K. Edmonds, C.T. Foxon, B.L. Gallagher, K.Y.
Wang Nottingham - J. Cibert, D. Ferrand Grenoble
- G. Bauer, A. Bonanni, W. Jantsch Linz
- D. Kechrakos, N. Papanikolaou, K. N. Trohidou
-- Athens
support Ohno Semiconductor Spintronics
ERATO Project of JST NANOSPIN --
EC projects Humboldt Foundation
2Introduction
3Ga1-xMnxAs resistance vs. temperature and Curie
temperature vs. x
Matsukura et al. (Tohoku) PRB98
III-V DMS
- ferromagnetism on both sides of metal-insulator
transitions - ferromagnetism disappears in the absence of holes
4 Effect of acceptor doping on magnetic
susceptibility in Zn1-xMnxTeP
?-1 vs. T
Sawicki et al. (Warsaw) pss02
- ferromagnetism driven by hole doping
- competition between intrinsic short-range AFM
- and hole-induced long-range FM
II-VI DMS
5Ferromagnetic temperature in p-(Zn,Mn)Te
- ferromagnetism on both sides of metal-insulator
transition
Ferrand et al. (Grenoble, Warsaw) PRB01 Sawicki
et al. (Warsaw) pss02
6Where are we?
remanent magnetisation and 1/? vs. T
hysteresis loops
TC ? ?CW
MREM
TC 173 K
1/?
Wang/ Sawicki (Nottingham, Warsaw)ICPS04
7Semiconductor materials showing hysteresis and
spontaneous magnetisation at 300 K
-
- wz-c-(Ga,Mn)N, (In,Mn)N, (Al,Mn)N,
(Ga,Cr)N, (Al,Cr)N - (Ga,Fe)N
- (Ga,Gd)N, (Ga,Eu)N
-
- (Ga,Mn)As, (In,Mn)As, (Ga,Mn)Sb,
(Ga,Mn)PC - (Zn,Mn)O, (Zn,Ni)O, (Zn,Co)O, (Zn,V)O,
(Zn,Fe,Cu)O, (Zn,Cu)O - (Zn,Cr)Te
-
- (Ti,Co)O2, (Ti,V)O2, (Ti,Cr)O2,
(Sn,Co)O2, (Sn,Fe)O2, (Hf,Co)O2 - (Cd,Ge,Mn)P2, (Zn,Ge,Mn)P2,
(Cd,Ge,Mn)As2, (Zn,Sn,Mn)As2 -
- (Ge,Mn), (Ge,Cr), (Ge,Mn,Fe)
-
- (La,Ca)B6, C, C60, HfO2, (Ga,Gd)N
materials in which magnetic - moment is claimed to do not come from
3d or 4f shell will not be - discussed
cf. G. Bouzerar
8SQUID studies of DMS in Warsaw
-
- M. Sawicki et al.
- wz-c-(Ga,Mn)N, (Ga,Fe)N
- (Ga,Mn)As
- (Zn,Mn)TeN, P
- (Cd,Mn)Te, (Cd,Mn)Se
- (Cd,Cr)Te, (Zn,Cr)Se
- (Zn,Mn)O, (Zn,Co)O, (Zn,Cr)O
-
-
-
-
9Todays talk
- low TC ferro DMS
- -- metallic side
- -- insulator side
- electronic phase separation
- high TC ferro DMS
- chemical phase separation
cf. A. Moreno
10Metallic side of metal-to-insulator transition
11p-d Zener/RKKY model of hole-controlled
ferromagnetism in DMS
Driving force lowering of the hole energy due
to redistribution between hole spin subbands
split by p-d exchange interaction
T.D. et al.,97- Jungwirth et al. (Austin/Prague)
99-
12 p-d Zener/RKKY model of hole-controlled
ferromagnetism in DMS
Driving force lowering of the hole energy due
to redistribution between hole spin subbands
split by p-d exchange interaction, ? ?M
M
Essential ingredient Complexity of the valence
band structure has to be taken into account
No adjustable parameters TC ?2?(s)DOS
T.D. et al.,97- MacDonald et al. (Austin/Prague)
99-
13Mn-based p-type DMS to which p-d Zener model has
been found to apply
- TC ? ?CW
- TC (p,x) consistent with
- p-d Zener model
- not double exchange
xMn 5 p 3.5x1020 cm-3
Expl. Tohoku, Tokyo, Grenoble, Wuerzburg, PSU,
Notre Dame, UCSB, Nottingham,
14Insulator side of metal-to-insulator
transitionAnderson-Mott localization
Small hole concentration rs gt 2.4 because of
either -- small acceptor concentration --
large compensation -- depletion by gates --
depletion at surfaces and interfaces e.g.
TAMR devices of (Ga,Mn)AS
Ruster et al. (Wuerzburg)
PRL05
Giddings et al. (Hitachi, Nottingham)
PRL05
15Insulator side of metal-to-insulator transition
Suggested model percolation of bound magnetic
polarons
p-type (II,Mn)VI
(III,Mn)V
Bhatt et al. (Princeton) PRL02 Das Sarma et
al., PRL02,04, ....
16Resistivity and magnetisation in (Ga,Mn)As
4 K
F. Matsukura et al..(Tohoku) PRB 98, SSC97
Co-existence of ferromagnetic and paramagnetic
components in non-metallic samples
17Collosal negative magnetoresistance on insulator
side of MIT
Ferrand et al. (Grenoble, Warsaw) PRB02
18Collosal negative magnetoresistance on insulator
side of MIT
Ferrand et al. (Grenoble, Warsaw) PRB02
Reminiscent to CMR oxides
Katsumoto et al. (Tokyo) pss98
19Ferromagnetism on insulator side of MIT--
competing models
- Percolation of bound magnetic polarons
- Ferromagnetic metallic-like regions embeded in
insulating - paramagnetic matrix ?
electronic nanoscale phase separation
cf. E.L. Nagaev, E. Dagotto et al.
- To tell the model
- inelastic neutron scattering Kepa et al.
(Warsaw, NIST) PRL03 - search for collosal MR in modulation-doped
quantum - wells, where no BMP are expected
-
Jaroszynski et al. (Warsaw, NHMFL) cond-mat/0509 - Monte Carlo Schroedinger eq. with magnetic
disorder -
Dechrakos et al. (Athenes, Warsaw) PRL05
20Probing competing AF and FM interactions by
inelastic neutron scattering in p-(Zn,Mn)Te
inelastic neutron scattering of n.n. Mn
pairs large single crystals of
Zn0.95Mn0.05TeP p 5x1018 cm-3, TCW 2
K Insulator side of the MIT
Hint -2(JAF Jh)SiSj JAF lt 0 super-exchange
Jh gt 0 hole-induced
Zn0.95Mn0.05Te
Kepa et al. (Warsaw, NIST) PRL03
21Hole induced contribution
empty dots - no holes, full dots with holes
?E 2Jh 0.03 ? 0.006 meV ?E RKKY 0.020
meV ?E BMP 0.12 meV
22Resistivity vs. carrier density at various Tin
(Cd,Mn)Te/(Cd,Mg)TeI quantum well
Jaroszynski et al. (Warsaw, NHMFL)
cond-mat/0509 submitted to PRL
Electron density (cm-2)
23Resistivity vs. carrier density at various Tin
(Cd,Mn)Te/(Cd,Mg)TeI quantum well
Electron density (cm-2)
Jaroszynski et al. (Warsaw, NHMFL)
cond-mat/0509 submitted to PRL
24Resistivity vs. carrier density at various Tin
(Cd,Mn)Te/(Cd,Mg)TeI quantum well
Electron density (cm-2)
Interpretation nanoscale electronic phase
separation into metallic ferromagnetic
regions embeded in isolating paramagnetic matrix
25Ferromagnetic coupling via weakly-localised holes
- Random distribution of
- acceptors and spins
- Metallic and ferromagnetic
- lakes embedded in insulating
- matrix
Localization length ? gtgt rs
- At the distance between Mn ions wave function can
be regarded as extended gtonly part of the spins
contribute to the ferromagnetic signal
26High TC ferro DMS
27 Experimental indications of room temperature
ferromagnetism in (Zn,Cr)Te
K. Ando et al., PRL03
28Effect of doping
Ando et al.. (Tsukuba) PRL03 Ozaki et al.
(Tsukuba) APL05
29Ferromagnetism of (Ga,Mn)N effect of doping
(Ga,Mn)N x 0.2 TC gtgt 300 K
(Ga,Mn)NSi
(Ga,Mn)N, x 0.2 TC ? 0 for Si doping
Reed et al. (NCSU) APL05
30GaAs MnAs precipitates
- depending on growth conditions precipitates or
spinodal decomposition
spinodal decomposition
Moreno et al. (Berlin) JAP02
- control magnetic properties De Boeck et al.
(IMEC) APL96 - enhance magnetooptical effects (MCD)
- Akinaga et al. (Tsukuba)
APL00 Shimizu et al. (Tokyo) APL01 - affect conductance and Hall effect
- not seen in HRXRD
Heimbrodt et al. (Marburg) PRB04
Moreno et al. (Berlin) JAP02
31Model for high TC DMS
- DMS in question undergo spinodal decomposition
into TM reach and TM poor phases that conserve
the structure of host crystal - (Ga,Mn)As (Ge,Mn) TEM (Ga,Mn)N --
synchrotron radiation microprobe -
Martinez-Criado et al.. (ESR, Schottky)
APL05 - TM reach phase is a high TC ferromagnetic metal
or ferrimagnetic insulator, which accounts for
spontaneous magnetisation at RT
32Model for high TC DMS
- DMS in question undergo spinodal decomposition
into TM reach and TM poor phases that conserve
the structure of host crystal - (Ga,Mn)As (Ge,Mn) TEM (Ga,Mn)N --
synchrotron radiation microprobe -
Martinez-Criado et al.. (ESR, Schottky)
APL05 - TM reach phase is a high TC ferromagnetic metal
or ferrimagnetic insulator, which accounts for
spontaneous magnetisation at RT - 3. Because of Coulomb repulsion spinodal
decomposition is blocked if TM is charged TM
charge state is controlled by co-doping with
shallow impurities T.D., submitted to
Nature Mat.
ZnTeN
Cr3
EF
33SUMMARY
Three classes of DMS showing ferromagnetic
properties 1. Magnetically uniform
hole-controlled ferromagnetic DMS
p-d Zener model real v.b. structure 2.
Magnetically non-uniform ferro DMS exhibiting
electronic nanoscale phase separation
driven by -- quenched disorder
carrier density fluctuations on insulating
side of MIT -- competition
between FM and AFM interactions
Griffiths phase (?) Monte
Carlo simulations with random acceptor and spin
distributions 3. Magnetically non-uniform
ferromagnetic DMS exhibiting chemical
nanoscale phase separation --
annealed disorder (at growth temperature)
-- controlled by magnetic ion charge
state new method of
self-organised growth of nanostructures
34(La,Ca)MnO3
DMS interactions determine spatial distribution
of both carriers and localized spins
35 END