Title: Temporal Causal Modeling with Graphical Granger Methods
1Temporal Causal Modeling with Graphical Granger
Methods
SIGKDD 07 August 13, 2007
- Andrew Arnold (Carnegie Mellon University)
- Yan Liu (IBM T.J. Watson Research)
- Naoki Abe (IBM T.J. Watson Research)
2Talk Outline
- Introduction and motivation
- Overview of Granger causality
- Graphical Granger methods
- Exhaustive Granger
- Lasso Granger
- SIN Granger
- Vector auto-regression (VAR)
- Experimental results
3A Motivating Example Key Performance Indicator
Data (KPI)in Corporate Index Management SP
Variables
Company HAL HAL HAL HAL HAL HAL HAL
Year 1999 2000 2000 2000 2000 2001 2001
Quarter 4 1 2 3 4 1 2
Revenue (M) 6.24 6.54 5.82 3.89 4.1 4.41 3.6
Revenue-to-RD 2.185704 1.734358 1.381822 0.416212 0.843057 0.906083 0.930714
Revenue-to-RD CAGR -0.61429 -0.47757 -0.32646
Innovation Index 0.517621 0.578062 0.567874 0.98624 0.696722 0.679335 .734627
Innovation Index CAGR 0.346008 0.175194 .229845
CapEx to Revenue 0.152292 0.258789 0.111111 0.63592 1.33114 1.389658 0.009722
Time
4KPI Case Study Temporal Causal Modeling for
Identifying Levers of Corporate Performance
- How can we leverage information in temporal data
to assist causal modeling and inference ? - Key idea A cause necessarily precedes its
effects
Variables
Company HAL HAL HAL HAL HAL HAL HAL
Year 1999 2000 2000 2000 2000 2001 2001
Quarter 4 1 2 3 4 1 2
Revenue (M) 6.24 6.54 5.82 3.89 4.1 4.41 3.6
Revenue-to-RD 2.185704 1.734358 1.381822 0.416212 0.843057 0.906083 0.930714
Revenue-to-RD CAGR -0.61429 -0.47757 -0.32646
Innovation Index 0.517621 0.578062 0.567874 0.98624 0.696722 0.679335 .734627
Innovation Index CAGR 0.346008 0.175194 .229845
CapEx to Revenue 0.152292 0.258789 0.111111 0.63592 1.33114 1.389658 0.009722
Time
5Granger Causality
- Granger causality
- Introduced by the Nobel prize winning economist,
Clive Granger Granger 69 - Definition a time series x is said to Granger
cause another time series y, if and only if - regressing for y in terms of past values of both
y and x - is statistically significantly better than
regressing y on past values of y only - Assumption no common latent causes
6Variable Space Expansion Feature Space Mapping
7Graphical Granger Methods
- Exhaustive Granger
- Test all possible univariate Granger models
independently - Lasso Granger
- Use L1-normed regression to choose sparse
multivariate regression models - Meinshausen Buhlmann, 06
- SIN Granger
- Do matrix inversion to find correlations between
features across time - Drton Perlman, 04
- Vector auto-regression (VAR)
- Fit data to linear-normal time series model
- Gilbert, 95
8Exhaustive Granger vs. Lasso Granger
9Baseline methods SIN and VAR
10Empirical Evaluation of Competing Methods
- Evaluation by simulation
- Sample data from synthetic (linear normal) causal
model - Learn using a number of competing methods
- Compare learned graphs to original model
- Measure similarity of output graph to original
graph in terms of - Precision of predicted edges
- Recall of predicted edges
- F1 of predicted edges
- Parameterize performance analysis
- Randomly sample graphs from parameter space
- Lag Features Affinity Noise Samples per
feature Samples per feature per lag - Conditioning to see interaction effects
- E.g. Effect of features when samples_per_feature
_per_lag is small vs large
11Experiment 1A Performance vs. Factors- Random
sampling all factors -
12Experiment 1s Efficiency
13Experiment 1B Performance vs. Factors- Fixing
other factors -
13
14Experiment 1C Performance vs. Factors- Detail
Parametric Conditioning -
15Experiment 2 Learned Graphs
16Experiment 3 Real World DataOutput Graphs on
the Corporate KPI Data