Temporal Causal Modeling with Graphical Granger Methods - PowerPoint PPT Presentation

1 / 16
About This Presentation
Title:

Temporal Causal Modeling with Graphical Granger Methods

Description:

How can we leverage information in temporal data to assist causal ... [Gilbert, 95] 8. Exhaustive Granger vs. Lasso Granger. Baseline methods: SIN and VAR ... – PowerPoint PPT presentation

Number of Views:177
Avg rating:3.0/5.0
Slides: 17
Provided by: csC76
Category:

less

Transcript and Presenter's Notes

Title: Temporal Causal Modeling with Graphical Granger Methods


1
Temporal Causal Modeling with Graphical Granger
Methods
SIGKDD 07 August 13, 2007
  • Andrew Arnold (Carnegie Mellon University)
  • Yan Liu (IBM T.J. Watson Research)
  • Naoki Abe (IBM T.J. Watson Research)

2
Talk Outline
  • Introduction and motivation
  • Overview of Granger causality
  • Graphical Granger methods
  • Exhaustive Granger
  • Lasso Granger
  • SIN Granger
  • Vector auto-regression (VAR)
  • Experimental results

3
A Motivating Example Key Performance Indicator
Data (KPI)in Corporate Index Management SP
Variables
Company HAL HAL HAL HAL HAL HAL HAL
Year 1999 2000 2000 2000 2000 2001 2001
Quarter 4 1 2 3 4 1 2
Revenue (M) 6.24 6.54 5.82 3.89 4.1 4.41 3.6
Revenue-to-RD 2.185704 1.734358 1.381822 0.416212 0.843057 0.906083 0.930714
Revenue-to-RD CAGR -0.61429 -0.47757 -0.32646
Innovation Index 0.517621 0.578062 0.567874 0.98624 0.696722 0.679335 .734627
Innovation Index CAGR 0.346008 0.175194 .229845
CapEx to Revenue 0.152292 0.258789 0.111111 0.63592 1.33114 1.389658 0.009722
Time
4
KPI Case Study Temporal Causal Modeling for
Identifying Levers of Corporate Performance
  • How can we leverage information in temporal data
    to assist causal modeling and inference ?
  • Key idea A cause necessarily precedes its
    effects

Variables
Company HAL HAL HAL HAL HAL HAL HAL
Year 1999 2000 2000 2000 2000 2001 2001
Quarter 4 1 2 3 4 1 2
Revenue (M) 6.24 6.54 5.82 3.89 4.1 4.41 3.6
Revenue-to-RD 2.185704 1.734358 1.381822 0.416212 0.843057 0.906083 0.930714
Revenue-to-RD CAGR -0.61429 -0.47757 -0.32646
Innovation Index 0.517621 0.578062 0.567874 0.98624 0.696722 0.679335 .734627
Innovation Index CAGR 0.346008 0.175194 .229845
CapEx to Revenue 0.152292 0.258789 0.111111 0.63592 1.33114 1.389658 0.009722
Time
5
Granger Causality
  • Granger causality
  • Introduced by the Nobel prize winning economist,
    Clive Granger Granger 69
  • Definition a time series x is said to Granger
    cause another time series y, if and only if
  • regressing for y in terms of past values of both
    y and x
  • is statistically significantly better than
    regressing y on past values of y only
  • Assumption no common latent causes

6
Variable Space Expansion Feature Space Mapping
7
Graphical Granger Methods
  • Exhaustive Granger
  • Test all possible univariate Granger models
    independently
  • Lasso Granger
  • Use L1-normed regression to choose sparse
    multivariate regression models
  • Meinshausen Buhlmann, 06
  • SIN Granger
  • Do matrix inversion to find correlations between
    features across time
  • Drton Perlman, 04
  • Vector auto-regression (VAR)
  • Fit data to linear-normal time series model
  • Gilbert, 95

8
Exhaustive Granger vs. Lasso Granger
9
Baseline methods SIN and VAR
  • SIN
  • VAR

10
Empirical Evaluation of Competing Methods
  • Evaluation by simulation
  • Sample data from synthetic (linear normal) causal
    model
  • Learn using a number of competing methods
  • Compare learned graphs to original model
  • Measure similarity of output graph to original
    graph in terms of
  • Precision of predicted edges
  • Recall of predicted edges
  • F1 of predicted edges
  • Parameterize performance analysis
  • Randomly sample graphs from parameter space
  • Lag Features Affinity Noise Samples per
    feature Samples per feature per lag
  • Conditioning to see interaction effects
  • E.g. Effect of features when samples_per_feature
    _per_lag is small vs large

11
Experiment 1A Performance vs. Factors- Random
sampling all factors -
12
Experiment 1s Efficiency
13
Experiment 1B Performance vs. Factors- Fixing
other factors -
13
14
Experiment 1C Performance vs. Factors- Detail
Parametric Conditioning -
15
Experiment 2 Learned Graphs
16
Experiment 3 Real World DataOutput Graphs on
the Corporate KPI Data
Write a Comment
User Comments (0)
About PowerShow.com