Biped Kinematics and Dynamics - PowerPoint PPT Presentation

1 / 8
About This Presentation
Title:

Biped Kinematics and Dynamics

Description:

Biped Kinematics and Dynamics. Two Link Model. L1. L2. l1= L1/2. l2= L2/2. m1 is mass of Link 1 ... of mass of Link 2. Kinematic Model. Simple model [d 1/dt, d ... – PowerPoint PPT presentation

Number of Views:38
Avg rating:3.0/5.0
Slides: 9
Provided by: mass6
Category:

less

Transcript and Presenter's Notes

Title: Biped Kinematics and Dynamics


1
Biped Kinematics and Dynamics
2
Two Link Model
?2
L2
l1 L1/2
?1
L1
l2 L2/2
m1 is mass of Link 1
m2 is mass of Link 2
G1 is centre of mass of Link 1
G2 is centre of mass of Link 2
3
Kinematic Model
  • Simple model
  • d?1/dt, d?2/dt ?1, ?2
  • where ?1and ?2 are the angular velocities
    applied to the joints

4
Newtonian Dynamic Model
  • XG1 l1 sin ?1 XG2 L1 sin ?1 l2 sin ?2
  • YG1 l1 cos ?1 YG2 L1 cos ?1 l2 cos ?2
  • Joint 2
  • m2d2(XG2)/dt2l2 cos ?2 - m2d2(YG2)/dt2l2 sin ?2
    m2g l2 sin ?2 ?2
  • Joint 1
  • m1d2(XG1)/dt2l1 cos ?1 - m1d2(YG1)/dt2l1 sin ?1
    m2d2(XG2)/dt2L1 cos ?1 - m2d2(YG2)/dt2L1 sin ?1
    m1g l1 sin ?1 m2g L1 sin ?1 ?1

5
Joint 2
  • ?1(m2 L1 l2cos ?1cos?2 m2 L1 l2sin?1sin ?2)
    ?2(m2 l22 cos2 ?2 m2 l22 sin2 ?2) ?12
    (-m2 L1 l2sin?1cos?2m2L1 l2 cos?1sin?2) ?22
    (-m2 l22sin?2cos?2m2 l22 sin?2cos ?2) m2g l2
    sin ?2 ?2
  • so
  • ?1(m2 L1 l2 cos (?2 -?1)) ?2(m2 l22) ?12
    (m2 L1 l2 sin(?2 -?1)) ?22 (0)
    m2g l2 sin ?2 ?2

6
Joint 1
  • ?1(m1 l12 cos2 ?1 m2 L12 cos2 ?1 m1 l12 sin2
    ?1 m2 L12 sin2 ?1)
    ?2(m2 L1 l2 cos ?1 cos
    ?2 m2 L1 l2 sin ?1 sin ?2 ) ?12 (-m2
    l22sin?1cos?2-m2 L22sin?1cos?2m2
    l22sin?1cos?2m2 L22sin?1cos?2)
    ?22 (-m2 L1l2 sin?2cos?1m2 L1l2
    sin?1cos ?2) g sin ?1(m1 l1 m2 L1 )
    ?1
  • so
  • ?1(m1 l12 m2 L12) ?2(m2 L1 l2cos(?2-?1))
    ?12 (0) ?22 (-m2 L1 l2 sin(?2 -?1))
    g sin ?1(m1 l1 m2 L1 ) ?1

7
Full Dynamic Equation
  • M(?)? F(?,?)? G(?) T(?)
  • where M is the inertia matrix, F the
    coriolis/centripedal matrix, G the gravity vector
    and T the torque vector
  • The equations can also be derived using
    Lagrangian techniques.

8
General Biped Models
  • 4 link planar biped
  • can be derived using similar techniques to above
  • 7 link 3D biped
  • analysis more complex, but can be similarly
    derived
Write a Comment
User Comments (0)
About PowerShow.com