Modelling Cell-DEVS applications - PowerPoint PPT Presentation

About This Presentation
Title:

Modelling Cell-DEVS applications

Description:

Input/output events through specialized ports in predefined cells. CD (1998/99) ... If the cell is alive and has 4 living neighbors, it remains alive. ... – PowerPoint PPT presentation

Number of Views:15
Avg rating:3.0/5.0
Slides: 15
Provided by: gabriel65
Category:

less

Transcript and Presenter's Notes

Title: Modelling Cell-DEVS applications


1
Modelling Cell-DEVS applications
  • Cellular models implementation in CD

2
CD (1998/99)
  • N-dimensional cell spaces.
  • Implementation of the Cell-DEVS
  • N-dimensional zones with different behavior.
  • Input/output events through specialized ports in
    predefined cells.

3
CD (cont.)
  • CD specification language for cell behavior
  • Manipulation of three-valued logic (T, F and ?).
  • Arithmetic operations (, -, and / ).
  • Operations using real numbers trigonometric
    functions, roots, power, rounding, integer value,
    modulus, logarithms, factorial, absolute value,
    maximum, minimum, L.C.D., M.C.M., etc. boolean,
    comparison, arithmetic, time, conditionals,
    angle conversion, pseudo-random generation,
    error rounding, predefined constants.
  • Functions providing information about the
    neighborhood state (truecount, falsecount,
    undefcount y statecount(n))

4
Model Specification
  • Cell-DEVS coupled model parameters
  • Cell-DEVS atomic models definition
  • Use the formal specification for each model
  • Definition of the local computing functions using
    a specification language.
  • Value Delay Condition

5
Basic examples on the CD spec. language
  • Is the diagonal true?

(-1,-1) and (0,0) and (1,1)
  • ? a False neighbour?

FalseCount gt 1
  • Can I move in diagonal?

not (-1,-1) or not (-1,1) or not (1,-1) or not
(1,1)
6
Cell-DEVS coupled model. The Life game
top components life life type cell width
20 height 20 delay transport defaultDelayTim
e 100 border wrapped neighbors
life(-1,-1) life(-1,0) life(-1,1) neighbors
life(0,-1) life(0,0) life(0,1) neighbors
life(1,-1) life(1,0) life(1,1) localtransition
life-rule life-rule rule 1 100 (0,0) 1
and trueCount 5 rule 1 100 (0,0) 0 and
trueCount 3 rule 0 100 t
If the cell is alive and has 4 living neighbors,
it remains alive. If it is dead and 3 living
neighbors, it is born. Otherwise, it dies.
7
Life model execution
Time 000000000 01234567890123456789
-------------------- 0
1 2
3 4
5 6
7 8
9 10
11 12
13 14
15 16
17 18
19
--------------------
Time 000000100 01234567890123456789
-------------------- 0
1 2
3 4
5 6
7 8
9
10 11
12 13
14 15
16 17
18 19
--------------------
Time 000000200 01234567890123456789
-------------------- 0
1 2
3 4
5 6
7 8
9
10 11
12 13
14 15
16 17
18 19
--------------------
8
Excitable Media
  • ExMedia
  • type cell dim (9,9)
  • delay transport border wrapped
  • neighbors (-1,-1) (-1,0) (-1,1) (0,-1)
  • neighbors (0,1) (1,-1) (1,0) (1,1) (0,0)
  • localtransition Ex-rules
  • Ex-rules
  • rule 0 100 (0,0)0 and statecount(2)0
  • rule 2 100 (0,0)0 and statecount(2)gt0
  • rule 1 100 (0,0) 2
  • rule 0 100 (0,0) 1
  • rule (0,0) 100 t

9
Surface Tension
  • Tension
  • type cell
  • dim (40,40)
  • delay transport
  • border wrapped
  • neighbors (-1,-1) (-1,0)
  • (-1,1) (0,-1) (1,-1) (1,0)
  • (1,1) (0,0) (0,1)
  • localtransition Ten-rules
  • Ten-rules
  • rule 0 100 statecount(0) gt 5
  • rule 1 100 t

10
Inputs/Outputs from/to other models
top components ex1 in in out
outG1 outG2 link out1_at_ex1 outG1 link
out2_at_ex1 outG2 link in in_at_ex1 ex1 type
cell width 2 height 2 delay transport
defaultDelayTime 1 in in out
out1 out2 link in in_at_ex1(1,1) link
output1_at_ex1(1,1) out1 link output2_at_ex1(1,1)
out2 portInTransition in_at_ex1(1,1)
specialRule localtransition nothing-rule zone
generateOut (1,1) nothing-rule rule
(0,0) 1 t specialRule rule
portValue(thisPort) 1 t generateOut rule
(0,0)send(output1,9.9999) 1
(0,0)gt10 rule (0,0)send(output2,3.3333) 1
(0,0)lt10
11
A 3D heat diffusion model
  • Cells Neighborhood Coupling Scheme
  • 3-D heat diffusion model (stationary/transient).
  • Heater/Cooler DEVS models generating random
    numbers.
  • Two input cells for heat/cold.

12
Models specification
top components room Heater_at_Generator
Cooler_at_Generator link out_at_Heater inputHeat_at_room
link out_at_Cooler inputCold_at_room room ty
pe cell dim (4, 4, 4) delay
transport defaultDelayTime 100
border wrapped neighbors room(-1,0,-1)
room(0,-1,-1) room(0,0,-1) room(0,1,-1) ... in
HeatInput ColdInput link HeatInput
in_at_room(3,3,0) link HeatInput
in_at_room(2,2,1) link ColdInput in_at_room(3,3,2)
link ColdInput in_at_room(1,3,3) localtransition
heat-rule portInTransition in_at_room(3,3,0)
in_at_room(2,2,1) setHeat portInTransition
in_at_room(3,3,2) in_at_room(1,3,3) setCold heat-rule
Rule ( (-1,0,-1)(0,-1,-1)(0,0,-1)(0,1,-1)
(1,0,-1)(-1,-1,0) (-1,0,0)(-1,1,0)(0,-1,
0)(0,0,0)(0,1,0)(1,-1,0)(1,0,0) (1,1,0)(-1,
0,1)(0,-1,1)(0,0,1)(0,1,1)(1,0,1)(0,0,-2)
(0,0,2)(0,2,0)(0,-2,0)(2,0,0)(-2,0,0) ) /
25 1000 t setHeat rule uniform(24,80)
1000 t setCold rule uniform(-45,10)
1000 t Heater distribution exponential
mean 10 initial 1
13
Forest Fire model
ForestFire type cell dim (20,20) delay
inertial border nowrapped neighbors (-1,-1)
(-1,0) (-1,1) (0,-1) (0,0) (0,1) (1,-1) (1,0)
(1,1) localtransition FireBehavior FireBehavio
r rule (1,-1)(21.552615/17.967136)
(21.552615/17.967136)60000 (0,0)0 and
0lt(1,-1) rule (1,0)(15.24/5.106976) (15.24
/ 5.106976)60000 (0,0)0 and 0lt(1,0) rule
(0,-1)(15.24/5.106976) (15.24 /
5.106976)60000 (0,0)0 and 0lt(0,-1) rule
(-1,-1)(21.552615/1.872060) (21.552615 /
1.872060)60000 (0,0)0 and 0lt(-1,-1) rule
(1,1)(21.552615/1.872060) (21.552615/1.872060)
60000 (0,0)0 and 0lt(1,1) rule
(-1,0)(15.24/1.146091) (15.24 /
1.146091)60000 (0,0)0 and 0lt(-1,0) rule
(0,1)(15.24/1.146091) (15.24 /
1.146091)60000 (0,0)0 and 0lt(0,1) rule
(-1,1)(21.552615/0.987474) (21.552615/0.987474
)60000 (0,0)0 and 0lt(-1,1) rule (0,0) 0
t
14
Modified Forest Fires
rule -1 600003 (0,0)0 and((-1,0)-1 or
(0,1)-1 or (-1,0)-2 or (0,1)-2) rule -2
600003.5 (0,0)gt0 and((-1,0)-1 or(0,1)-1 or
(-1,0)-2 or (0,1)-2) rule -3 600004.5
(0,0)-2 rule -4 600005
(0,0)-3 rule -1 60000 (0,0)0
and (-1,0)-1 rule -2 600007 (0,0)gt0 and
((-1,1)-1 or (-1,1)-4) rule -3 600009
(0,0)-2 rule -4 600009 (0,0)-3
Write a Comment
User Comments (0)
About PowerShow.com