Title: Significant Digits
1(No Transcript)
2Significant Digits all the digits that occupy
places for which actual measurements are made,
plus ONE estimated digit
1
2
1
1
2
3When we are measuring quantities, the instrument
we use will determine the precision of the
quantity. For example, if we are using an
electronic balance that goes to 3 decimal places,
our answer should go to 3 decimal places.
4Rules for counting sig figs
- Digits other than zero are always significant.
- 96
- 61.4
- Zeroes between 2 other sig figs are always
significant. - 5.029
- 306
2
3
4
3
5Rules for Counting Sig Figs, cont.
- If in doubt, use the Atlantic/Pacific Rule
- If the decimal is present, start counting from
the left (Pacific side) until you reach the first
non-zero number. That number and everything
after is significant. - If the decimal is absent, start counting from the
right (Atlantic side) until you reach the first
non-zero number. That number and everything
after it is significant. - 4.7200
- 0.082
- 7000
- 8030
5
2
1
3
6Rules for calculating with sig figs
- In addition and subtraction, the answer should be
rounded off so that it has the same number of
decimal places as the quantity having the least
number of decimal places. - In multiplication and division, the answer should
have the same number of significant digits as the
given data value with the least number of
significant digits. - 4.60 ? 45
- 1.956 ? 3.3
- 1.1 225
- 2.65 1.4
207
210
0.5927
0.59
226.1
226
1.25
1.3
7Scientific Notation
- A method to write very large or very small
numbers - Coefficient any number from 1-9
- Exponent shows the number of times 10s are
multiplied together ( 102
)
10 ? 10
100
8Changing Standard Numbers to Scientific Notation
- Numbers greater than 10
- Move decimal until only ONE number is to the left
of the decimal. - The exponent is the number of places the decimal
has moved and it is POSITIVE. - Ex. 125
- 15,000,000,000
1.25 ? 102
1.5 ? 1010
9Changing Standard Numbers to Scientific Notation,
cont.
- Numbers less than 1
- Move decimal until only one number is to the left
of the decimal. - The exponent is the number of places the decimal
has moved and it is NEGATIVE. - Ex. 0.000189
- 0.5476
1.89 ? 10-4
5.476 ? 10-1
10Changing Standard Numbers to Scientific Notation,
cont.
- To change a number written in incorrect
scientific notation - Move the decimal until only one number is to the
left of the decimal. - Correct the exponent. (remember take away, add
back) - Ex. 504.2 ? 106
- 0.0089 ? 10-2
5.042 ? 108
8.9 ? 10-5
11Changing Numbers in Scientific Notation to
Standard Notation
- If the exponent is () move the decimal to the
right the same number of places as the exponent. - 1.65 ? 101
- 1.65 ? 103
- If the exponent is (-) move the decimal to the
left the same number of places as the exponent. - 4.6 ? 10-2
- 1.23 ? 10-3
16.5
1650
0.046
0.00123
12Multiplication and Division with Scientific
Notation
- To multiply numbers in scientific notation
- Multiply the coefficients.
- Add the exponents.
- Convert the answer to correct scientific
notation. - Ex (2 ? 109) x (4 ? 103)
8
? 1012
13Multiplication and Division with Scientific
Notation, cont.
- To divide numbers in scientific notation
- Divide the coefficients.
- Subtract the exponents.
- Convert the answer to correct scientific
notation. - Ex (8.4 ? 106) ? (2.1 ? 102)
4
? 104
14Addition and Subtraction with Scientific Notation
- Before numbers in scientific notation can be
added or subtracted, the exponents must be equal. - Ex. (5.4 ? 103) (6.0 ? 102)
(5.4 ? 103) (0.6 ? 103)
6.0 ? 103
15(No Transcript)
16T w o S y s t e m s
- M e t r i c
- M e t e r
- Gram
- Liter
- Celsius
- E n g l i s h
- yard, mile, feet
- pound, ounce
- quart, gallon
- Fahrenheit
17Metric System
18F a c t o r - L a b e l
M e t h o d
19F a c t o r - L a b e l
- T h e m o s t i m p o r t a n t
m a t h e m a t i c a l p r
o c e s s for scientists . - T r e a t s n u m b e r s a n d
u n i t s e q u a l l y . - M u l t i p l y w h a t i s g i v e n
b y f r a c t i o n s e q u a l t o
o n e t o c o n v e r t u n i t s .
20F a c t o r - L a b e l
A f r a c t i o n e q u a l t o o n e
W h a t i s g i v e n
21F a c t o r - L a b e l
H o w m a n y b a s k e t b a l l s c a n
b e c a r r i e d b y 8 b u s e s ?
1 bus 12 cars 3 cars 1
truck 1000 basketballs 1 truck
22F a c t o r - L a b e l
H o w m a n y b a s k e t b a l l s c a n
b e c a r r i e d b y 8 b u s e s ?
1 bus 12 cars 3 cars 1 truck 1000
basketballs 1 truck
8 buses
23F a c t o r - L a b e l
H o w m a n y b a s k e t b a l l s c a n
b e c a r r i e d b y 8 b u s e s ?
1 bus 12 cars 3 cars 1 truck 1000
basketballs 1 truck
12 cars
8 buses
1 bus
24F a c t o r - L a b e l
H o w m a n y b a s k e t b a l l s c a n
b e c a r r i e d b y 8 b u s e s ?
12 cars
1 truck
8 buses
3 cars
1 bus
25F a c t o r - L a b e l
H o w m a n y b a s k e t b a l l s c a n
b e c a r r i e d b y 8 b u s e s ?
1000 bballs
12 cars
1 truck
8 buses
1 truck
1 bus
3 cars
26F a c t o r - L a b e l
3 2 0 0 0 b a s k e t b a l l s c a n b e
c a r r i e d b y 8 b u s e s .
27F a c t o r - L a b e l
C o n v e r t 4 4 g r a m s t o k i l o
g r a m s .
28F a c t o r - L a b e l
C o n v e r t 4 4 g r a m s t o k i l o g
r a m s
4 4 g
0 . 0 0 1 k g
0 . 0 4 4 k g
1 g
29F a c t o r - L a b e l
C o n v e r t 8 . 3 c e n t i m e t e r s t
o m i l l i m e t e r s .
30F a c t o r - L a b e l
C o n v e r t 8 . 3 c e n t i m e t e r s t
o m i l l i m e t e r s
8.3 cm
1 m 100 cm
1000 mm 1 m
83 mm
31F a c t o r - L a b e l
M e t h o d