Significant Digits - PowerPoint PPT Presentation

1 / 31
About This Presentation
Title:

Significant Digits

Description:

When we are measuring quantities, the instrument we ... deca. base. deci. centi. milli. micro. nano. Abbreviation. k. h. da. d. c. m. . n. Equivalent to Base ... – PowerPoint PPT presentation

Number of Views:19
Avg rating:3.0/5.0
Slides: 32
Provided by: owenwh
Category:

less

Transcript and Presenter's Notes

Title: Significant Digits


1
(No Transcript)
2
Significant Digits   all the digits that occupy
places for which actual measurements are made,
plus ONE estimated digit
1
2
1
1
2
3
When we are measuring quantities, the instrument
we use will determine the precision of the
quantity. For example, if we are using an
electronic balance that goes to 3 decimal places,
our answer should go to 3 decimal places.
4
Rules for counting sig figs
  • Digits other than zero are always significant.
  • 96
  • 61.4
  • Zeroes between 2 other sig figs are always
    significant.
  • 5.029
  • 306

2
3
4
3
5
Rules for Counting Sig Figs, cont.
  • If in doubt, use the Atlantic/Pacific Rule
  • If the decimal is present, start counting from
    the left (Pacific side) until you reach the first
    non-zero number. That number and everything
    after is significant.
  • If the decimal is absent, start counting from the
    right (Atlantic side) until you reach the first
    non-zero number. That number and everything
    after it is significant.
  • 4.7200
  • 0.082
  • 7000
  • 8030

5
2
1
3
6
Rules for calculating with sig figs
  • In addition and subtraction, the answer should be
    rounded off so that it has the same number of
    decimal places as the quantity having the least
    number of decimal places.
  • In multiplication and division, the answer should
    have the same number of significant digits as the
    given data value with the least number of
    significant digits.
  • 4.60 ? 45
  • 1.956 ? 3.3
  • 1.1 225
  • 2.65 1.4

207
210
0.5927
0.59
226.1
226
1.25
1.3
7
Scientific Notation
  • A method to write very large or very small
    numbers
  • Coefficient any number from 1-9
  • Exponent shows the number of times 10s are
    multiplied together ( 102
    )

10 ? 10
100
8
Changing Standard Numbers to Scientific Notation
  • Numbers greater than 10
  • Move decimal until only ONE number is to the left
    of the decimal.
  • The exponent is the number of places the decimal
    has moved and it is POSITIVE.
  • Ex. 125
  • 15,000,000,000

1.25 ? 102
1.5 ? 1010
9
Changing Standard Numbers to Scientific Notation,
cont.
  • Numbers less than 1
  • Move decimal until only one number is to the left
    of the decimal.
  • The exponent is the number of places the decimal
    has moved and it is NEGATIVE.
  • Ex. 0.000189
  • 0.5476

1.89 ? 10-4
5.476 ? 10-1
10
Changing Standard Numbers to Scientific Notation,
cont.
  • To change a number written in incorrect
    scientific notation
  • Move the decimal until only one number is to the
    left of the decimal.
  • Correct the exponent. (remember take away, add
    back)
  • Ex. 504.2 ? 106
  • 0.0089 ? 10-2

5.042 ? 108
8.9 ? 10-5
11
Changing Numbers in Scientific Notation to
Standard Notation
  • If the exponent is () move the decimal to the
    right the same number of places as the exponent.
  • 1.65 ? 101
  • 1.65 ? 103
  • If the exponent is (-) move the decimal to the
    left the same number of places as the exponent.
  • 4.6 ? 10-2
  • 1.23 ? 10-3

16.5
1650
0.046
0.00123
12
Multiplication and Division with Scientific
Notation
  • To multiply numbers in scientific notation
  • Multiply the coefficients.
  • Add the exponents.
  • Convert the answer to correct scientific
    notation.
  • Ex (2 ? 109) x (4 ? 103)

8
? 1012
13
Multiplication and Division with Scientific
Notation, cont.
  • To divide numbers in scientific notation
  • Divide the coefficients.
  • Subtract the exponents.
  • Convert the answer to correct scientific
    notation.
  • Ex (8.4 ? 106) ? (2.1 ? 102)

4
? 104
14
Addition and Subtraction with Scientific Notation
  • Before numbers in scientific notation can be
    added or subtracted, the exponents must be equal.
  • Ex. (5.4 ? 103) (6.0 ? 102)

(5.4 ? 103) (0.6 ? 103)
6.0 ? 103
15
(No Transcript)
16
T w o S y s t e m s
  • M e t r i c
  • M e t e r
  • Gram
  • Liter
  • Celsius
  • E n g l i s h
  • yard, mile, feet
  • pound, ounce
  • quart, gallon
  • Fahrenheit

17
Metric System
18
F a c t o r - L a b e l
M e t h o d
  • W h a t i s i t ?

19
F a c t o r - L a b e l
  • T h e m o s t i m p o r t a n t
    m a t h e m a t i c a l p r
    o c e s s for scientists .
  • T r e a t s n u m b e r s a n d
    u n i t s e q u a l l y .
  • M u l t i p l y w h a t i s g i v e n
    b y f r a c t i o n s e q u a l t o
    o n e t o c o n v e r t u n i t s .

20
F a c t o r - L a b e l
A f r a c t i o n e q u a l t o o n e
W h a t i s g i v e n
21
F a c t o r - L a b e l
H o w m a n y b a s k e t b a l l s c a n
b e c a r r i e d b y 8 b u s e s ?
1 bus 12 cars 3 cars 1
truck 1000 basketballs 1 truck
22
F a c t o r - L a b e l
H o w m a n y b a s k e t b a l l s c a n
b e c a r r i e d b y 8 b u s e s ?

1 bus 12 cars 3 cars 1 truck 1000
basketballs 1 truck
8 buses
23
F a c t o r - L a b e l
H o w m a n y b a s k e t b a l l s c a n
b e c a r r i e d b y 8 b u s e s ?

1 bus 12 cars 3 cars 1 truck 1000
basketballs 1 truck
12 cars
8 buses
1 bus
24
F a c t o r - L a b e l
H o w m a n y b a s k e t b a l l s c a n
b e c a r r i e d b y 8 b u s e s ?

12 cars
1 truck
8 buses
3 cars
1 bus
25
F a c t o r - L a b e l
H o w m a n y b a s k e t b a l l s c a n
b e c a r r i e d b y 8 b u s e s ?

1000 bballs
12 cars
1 truck
8 buses
1 truck
1 bus
3 cars
26
F a c t o r - L a b e l
3 2 0 0 0 b a s k e t b a l l s c a n b e
c a r r i e d b y 8 b u s e s .
27
F a c t o r - L a b e l
C o n v e r t 4 4 g r a m s t o k i l o
g r a m s .
28
F a c t o r - L a b e l
C o n v e r t 4 4 g r a m s t o k i l o g
r a m s
4 4 g
0 . 0 0 1 k g

0 . 0 4 4 k g
1 g
29
F a c t o r - L a b e l
C o n v e r t 8 . 3 c e n t i m e t e r s t
o m i l l i m e t e r s .



30
F a c t o r - L a b e l
C o n v e r t 8 . 3 c e n t i m e t e r s t
o m i l l i m e t e r s
8.3 cm
1 m 100 cm
1000 mm 1 m

83 mm
31
F a c t o r - L a b e l
M e t h o d
Write a Comment
User Comments (0)
About PowerShow.com