Title: Spacecharge simulations and experiments at Hiroshima University
1Space-charge simulations and experiments at
Hiroshima University
- Hiromi Okamoto
- AdSM, Hiroshima University, Japan
2Recent Activities
- Resonance analysis
- Cooling simulations
- Beam ordering crystallization
- Plasma trap experiments
- Nanobeam generation
- Laser-matter interactions
- Laser wake field acceleration
3Resonance Analysis (1D)
- Dispersion relation
-
- The resonance condition of the coupling of
modes
FODO (50 fill) ?0 108 deg.
H. Okamoto K.Yokoya, NIM A 482 (2002) p.51.
4Resonance Simulation (1D)
- Sheet-beam simulation
-
- number of particles in
- number of particles in
FODO (50 fill) ?0 60 deg.
5Resonance Analysis (2D)
I. Hofmann et al., Part. Accel. 13 (1983) p.145.
6Test lattice
- Lattice TARN II
- Circumference 77.7 m
- Superperiodicity 6
- Betatron tunes 1.4 - 2.1
- Ion species
- Kinetic energy 1 MeV
7Resonance Simulation (2D)
?084 deg.
?0108 deg.
8Stopbands Cooling (1)
PIC simulation
Vlasov prediction
9Stopbands Cooling (2)
10Dispersive Resonance
Betatron Hamiltonian
KEK-PS
11Plasma Trap Experiments
Charged-particle beam in a strong-focusing channel
Single-species plasma in a linear trap
?
Use this equivalence for the systematic study of
space-charge effects !
First proposal H. Okamoto and H. Tanaka, NIM A
437 (1999) p.178. H.
Okamoto, Y. Wada and R. Takai, NIM A485 (2002)
p.244.
12Why traps ?
- Very compact
- Low cost
- High flexibility of fundamental parameters
- High resolution high precision measurements
- No radio-activation
13Segmented Paul Trap
14S-POD Simulator for Particle Orbit Dynamics
NOTE A similar experimental project is in
progress at Princeton University.
See, E.P. Gilson, et al., PRL 92 (2004) 155002.
15(No Transcript)
16(No Transcript)
17Molecular Dynamics Method
- In the reference cell, use real particles.
- Apply the periodic boundary condition for
long-range interactions.
The Ewald-type summation
18Beam-Frame Hamiltonian
Coulomb potential
RF
J. Wei, X.-P. Li, and A. M. Sessler, BNL Report,
BNL-52381 (1993)
19Laser Cooling
Basic cycle
Doppler cooling
Cooling force
Detuning
20S-LSR
- Circumference 22.6 m
- Superperiodicity 6
- Betatron tunes (2.067, 1.073)
- Length of a straight section 2.66 m
- Length of the solenoid 0.8 m
- RF harmonic number 100
- RF amplitude lt 30 V
- Ion species
- Kinetic energy 35 keV
- Saturation parameter (on axis) 1.0
- Saturation intensity 254 mW/cm2
- Minimum spot size 5 mm
21MD result
- The photon pressure operates only upon the
longitudinal beam motion. - No damping of the betatron motion, except for the
sympathetic cooling, takes place in general. - It is possible to extend a one-dimensional
cooling force to the other two degrees of
freedom - RCM equalizes the cooling rates of all three
directions.
BUT
Resonant Coupling Method (RCM)
H. Okamoto, A. M. Sessler and D. Möhl, PRL 72
(1994) p. 3977. H. Okamoto, PRE 50 (1994) p.4982.
22Future plans
- Space-charge experiments with S-POD
- Coherent resonance
- Halo formation
- Short-bunch effects
- Others
- More MD studies
- Cooling simulations
- Coulomb crystallization
- Experiments at S-LSR
- Electron and laser cooling
- Application of RCM
- Instabilities in space-charge-dominate
d beams
23MD
24Dancing string in S-LSR