Bs properties: ?Ms, ??s - PowerPoint PPT Presentation

1 / 29
About This Presentation
Title:

Bs properties: ?Ms, ??s

Description:

A squashed' unitary triangle small CP violation in Bs ... M12 stems from the real part of the box diagram, dominated by top ... CP-conserving strong phases , i arg(Ai) ... – PowerPoint PPT presentation

Number of Views:17
Avg rating:3.0/5.0
Slides: 30
Provided by: andrzejz4
Category:
Tags: cp | properties | real

less

Transcript and Presenter's Notes

Title: Bs properties: ?Ms, ??s


1
Bs properties ?Ms, ??s ?s
  • Avdhesh Chandra

for the CDF and DØ collaborations
Lattice QCD Workshop 2007, Fermilab
2
Unitary Triangle for Bs
In SM quark mixing (Q2/3? Q-1/3) is given by CKM
matrix

Unitarity triangle equation for b-quark
A squashed unitary triangle ? small CP
violation in Bs
Measurement of Bs properties helps in
constraining unitary triangle and hence new
physics.
3
Bs Mixing
b
?b
Schrödinger Equation
?s
s
  • M12 stems from the real part of the box
    diagram, dominated by top
  • G12 stems from the imaginary part, dominated by
    charm

Diagonalization gives two physically observed
Light and Heavy mass eigenstates
CP even
i.e. no CP violation
CP odd
squashed triangle ? flat triangle
4
Physical Quantities
Three physical quantities M12 , ?12 and
arg(-M12/?12)
  • In terms of mass eigenstates
  • ?s arg(-M12/?12) CP violation phase
  • ?Ms MH - ML 2M12 frequency of Bs-?Bs
    oscillations
  • ??s ?L - ?H 2?12cos?s decay width
    difference
  • Other useful quantities
  • afs Im(?12/M12) (?12/M12)sin?s
    (??s/?Ms)tan?s semileptonic CP asymmetry
  • AmixCP(Bs?(J/??)CP?) ? sin(-2?s) mixing
    induced CP asymmetries
  • A0 A A? Linear polarization amplitudes in
    Bs?J/? ?
  • ?0 ? ?? CP-conserving strong phases , ?i ?
    arg(Ai)

In recent years there is a big improvement in
theory prediction of ?Ms , ??s ?s
We can extract all the elements of mixing matrix,
and other physical quantities, describe Bs system
5
For New Physics
Theory Predictions
hep-ph/0612167v2
afs (2.06 ? 0.57).10-5 ??s/?Ms (49.7 ?
9.4).10-4
??s (0.096 ? 0.039) ps-1 ?Ms (19.30 ? 6.74)
ps-1 ?s (4.2 ? 1.4).10-3
Note, angle ? of the unitary triangle in Bs
system ?s(2.0 ? 0.5).10-2
New Physics in the Bs system can be parameterized
by a complex number ?s , defined as
where
For SM ?s 1 while ?s? is a physical CP phase
??s/?Ms
?Ms
?Ms ?MsSM ?s (19.30 ? 6.74)ps-1.?s ??s
2?12cos(?sSM ?s?) (0.096 ?
0.039)ps-1. cos( (4.2 ?
1.4).10-3 ?s?) . and others
Im ?s
afs
Re ?s
6
The CDF DØ Detector
  • Excellent tracking mass resolution
  • Silicon ? lt 2 , 90 cm long
  • 96 layer drift chamber 44 to 132 cm
  • Triggered Muon coverage
  • pT gt 1.5 GeV, ? lt 1
  • Low pT Muon identification
  • pT gt 1.5 GeV, ? lt 2
  • High tracking efficiency
  • 95 ? lt 3 (Silicon disks)

7
Mixing frequency Measurement
8
Overview
For ?? 0
The probability of mixing is given by
Tagging efficiency
Proper decay length resolution
Signal
Dilution
Background
  • One needs three ingredients
  • Bs flavor at decay
  • Bs flavor at production
  • Good proper decay length resolution

Transverse decay length
Proper decay length
lepton
K
jet
?
PV
frag
frag
SV
b
?b
Bs
B hadron
Lxy
Ds
K
9
DØ Bs candidates
Fully reconstructed hadronic and partially
reconstructed hadronic and semileptonic Bs decays
from 2.4 fb-1
semileptonic mode
Nsig
Decay Channels
44777 1663 249 18098
Ds invariant mass
hadronic mode
Ds invariant mass
Bs0 invariant mass
10
CDF Bs candidates
From 5600 fully reconstructed hadronic, 3100
partially reconstructed hadronic, and 61500
partially reconstructed semileptonic Bs decays of
1.0 fb-1
semileptonic mode
11
Proper decay length resolution
  • ?ct event by event, with scale factor
  • For partially reconstructed decays

K from MC, for each decay channel
12
Initial state flavor tagging
On reconstructed Bs side (due to correlation
between Bs flavor and the charge of fragmentation
K)
Opposite to reconstructed Bs side (due to b ,?b
produciton)
CDF
DØ
  • Using both opposite side and same side
  • NN combination of the opposite side jet charge ,
    kaon and lepton tags ?D2 1.8
  • NN kinematic and identification variables of the
    kaon candidate, for same side tag ?D2 3.7
    (had.) , 4.8 (semilep.)
  • Combine OST and SST if both present
  • Assume both independent
  • Combine SST and Event charge if both present
  • Sqi of all tracks on opposite side
  • Total ?D2 4.5

13
DØ ?Ms result
Combined amplitude scan
DMs (ps-1)
  • A parabolic fit to likelihood scan for DMs
    returns
  • DMs 18.5 0.9 ps-1
  • 3.1s statistical significance

Sensitivity 27.3 ps-1
14
CDF ?Ms result
  • ?Ms 17.77 ? 0.10 (stat) ? 0.07 (syst) ps-1
  • 5.4? statistical significance

15
??s ?s from J/? ?
16
Angular Distribution
  • Bs ? V1 V2 (J/? ?) i.e. Spin
    0 ? 11 L 0,1,2
  • L 0 and 2 corresponds to CP even L1 CP
    odd
  • Angular distribution can be written in helicity
    basis , BUT generally Transversity basis is
    used to write angular distribution , where polar
    coordinates are defined in J/? rest frame and
    ? rest frame

Polarization Amplitudes
17
Polarization Amplitudes
hep-ph/9804253 hep-ph/0012219
Upper sign corresponds to Time evolution of pure
Bs0 ? J/? ? at t0 Lower sign corresponds to
Time evolution of pure?Bs0 ? J/? ? at t0
  • ?? ? average decay width of two physical
    eigenstates
  • ?1 ?2 ? CP-conserving strong phase ? and 0
  • A0(0) , A(0) ?CP-even linear polarization
    amplitude at t0
  • A?(0) ?CP-odd linear polarization amplitude at t0

18
For untagged
Adding up for all Bs0 and ?Bs0
  • Assuming equal production rate of Bs0 and?Bs0 in
    p ?p collisions
  • All opposite terms go away Insensitive to
    ?Ms , but sensitive to ?s

19
Results (no CP violation)
?s?0
c?s (in ?m)
456 ? 13 (stat) ? 7 (syst)
454 ? 21 (stat) (syst)
??s (in ps-1)
0.076 (stat) ? 0.006 (syst)
0.12 ? 0.09 (stat) ? 0.02 (syst)
20
Results (?s free)
??s 0.17 ? 0.09 (stat) ? 0.02 (syst) ps-1 ?s
-0.79 ? 0.56 (stat) (syst)
  • no numerical values are given
  • 90 95 confidence curves are shown
  • above are close to SM values
  • results have 4-fold ambiguities

21
Angular fit projections
22
Semileptonic charge asymmetry
  • afss is measured in two independent way at DØ
  • Indirectly from time-integrated di-muon charge
    asymmetry
  • 0.0064 ? 0.0101
  • Directly from time-integrated charge asymmetry
    from Bs ? ??Ds
  • 0.0245 ?
    0.0193 ? 0.0035
  • Combining above two measurement
  • 0.0001 ?
    0.0090

For measured value of ?Ms ??s tan?s 0.002 ?
0.160 ps-1
23
Constrained DØ results
??s 0.13 ? 0.09 ps-1 ?s -0.70
24
Summary of numbers
DØ
CDF
?Ms (in ps-1)
17.77 ? 0.10 ? 0.07
18.56 ? 0.89
??s (in ps-1)
0.13 ? 0.09
0.076 ? 0.006
?s
-0.70
Results are consistent with SM
25
Room for new physics
Using measured values of ?Ms , ?s, ??s/?Ms and
asfs
Theoretical
??s/?Ms
?Ms
Im ?s
afs
Re ?s
Still room for new physics, updated results will
be important for existence of any deviation from
SM stay tuned!
26
Coming Soon
  • Updated measurement with 2 times data
  • Flavour tagging to Bs?J/??
  • Relatively small error on physics parameters
    (specially ?s)
  • Helpful in resolving ambiguities
  • Required
  • Better understanding of similar physics
    parameters from other source so Bs?J/?? can be
    benefited for example by Bd?J/?K
  • Fixing strong phases from Bd?J/?K

27
Additional Slides
28
Amplitude Scan
Scan ?Ms, for each value find
If sample frequency is ?Ms amplitude
otherwise
29
From QCD
Weak decay constant
Bag parameter
Large uncertainty cancels out
un
Write a Comment
User Comments (0)
About PowerShow.com