Title: Teknik Peramalan: Materi minggu kedelapan
1Teknik Peramalan Materi minggu kedelapan
- ? Model ARIMA Box-Jenkins
- ? Identification of STATIONER TIME SERIES
? Estimation of ARIMA model
? Diagnostic Check of
ARIMA model
? Forecasting - ? Studi Kasus Model ARIMAX (Analisis
Intervensi, Fungsi Transfer dan Neural Networks)
2Estimation and Testing parameter ARIMA model
t-values and prob-values for testing parameter
model ARIMA
Parameters ARIMA model estimates
3Diagnostic Checking of ARIMA model white
noise residual
? Ljung-Box statistic for testing white noise
residual
ACF of residual
4Forecasting of ARIMA(p,d,q) model
? Forecasting of AR(1) model
or
? Forecasting of MA(1) model
5Example Daily readings of viscosity of Chemical
Product XB-77-5 Bowerman and OConnell,
pg. 471
6Example IDENTIFICATION step stationary,
ACF and PACF
Stationer time series
PACF
ACF
Dies down sinusoidal
Cuts off after lag 2
7Example ESTIMATION and DIAGNOSTIC CHECK step
Estimation and Testing parameter
Diagnostic Check (white noise residual)
8Example DIAGNOSTIC CHECK step Normality test
of residuals
9Example FORECASTING step
MINITAB output
10Calculation FORECASTING (FITS and FORECAST)
continued
11MINITAB command IDENTIFICATION Step
Plot Data ? stationarity data
ACF PACF data ? to find tentative
ARIMA model
12IDENTIFICATION Step Time Series Plot
13IDENTIFICATION Step ACF data
14IDENTIFICATION Step PACF data
15MINITAB command ESTIMATION, DIAGNOSTIC
CHECK FORECASTING Step
Estimation, Diagnostic Check and Forecasting
16MINITAB command Normality test for residual