Shape Deformation - PowerPoint PPT Presentation

1 / 49
About This Presentation
Title:

Shape Deformation

Description:

Wolfram von Funck, Holger Theisel, Hans-Peter Seidel. MPI Informatik. C. A. G. D. C. G. C ... Moving vertex along the deformation orbit defined by the path ... – PowerPoint PPT presentation

Number of Views:41
Avg rating:3.0/5.0
Slides: 50
Provided by: Tur48
Category:

less

Transcript and Presenter's Notes

Title: Shape Deformation


1
Shape Deformation
  • Reporter Zhang, Lei
  • 5/30/2006

2
Stuff
  • Vector Field Based Shape Deformation (VFSD)
  • Multigrid Alogrithm for Deformation
  • Edit Deforming Surface Animation
  • Subspace Gradient Domain Mesh Deformation
  • J. Huang, X. H. Shi, X. G. Liu, K. Zhou, L. Y.
    Wei, S. H. Teng, H. J. Bao, B. G. Guo and H. Y.
    Shum.

3
Vector Field Based Shape Deformations
  • Wolfram von Funck, Holger Theisel, Hans-Peter
    Seidel
  • MPI Informatik

4
Basic Model
Moving vertex along the deformation orbit
defined by the path lines of a vector field v.
5
Path Line of Vector Field
X(t)
X(t0)
t0
t
Given a time-dependent vector field V(X, t), a
Path Line in space is X(t)
OR
6
Vector Field Selection
  • Deformation Request
  • No self-intersection
  • Volume-preserving
  • Details-preserving
  • Smoothness of shape in deformation
  • Divergence-free Vector Field V(V1, V2, V3)

7
Construction of V
  • Divergence-free

p, q two scalar field
2D space
3D space
8
Vector Field for Special Deformation
  • Constant Vector Field V translation

Deformation
9
Vector Field for Special Deformation
  • Linear Vector Field V rotation

Deformation
10
Piecewise Field for Deformation
  • Deformation for a selected region
  • Define piecewise continuous field
  • Inner region V
  • Outer region zero
  • Intermediate region blending

Region specified by an implicit function And
thresholds
11
Piecewise Field for Deformation
Inner region
Outer region
Intermediate region
12
Piecewise Field for Deformation
if
if
if
if
if
if
13
Deformation Tools
  • Translation constant vector field

14
Deformation Tool
  • Rotation linear vector field

15
Path Line Computation
Runge-Kutta Integration
For each vertex v(x, ti), integrating vector
field above to v(x, ti1)
16
Remeshing
Edge Split
17
Examples
  • Demo

18
Examples
19
Performance
  • Benchmark Test

AMD 2.6GHz 2 GB RAM GeForce 6800 GT GPU
20
Conclusion
  • Embeded in Vector Field
  • FFD
  • Parallel processing
  • Salient Strength
  • No self-intersection
  • Volume-preserving
  • Details-preserving
  • Smoothness of shape in deformation

21
A Fast Multigrid Algorithm for Mesh Deformation
  • Lin Shi, Yizhou Yu, Nathan Bell, Wei-Wen Feng
  • University of Illinois at Urbana-Champaign

22
Basic Model
  • Two-pass pipeline
  • Local Frame Update
  • Vertex Position Update
  • Multigrid Computation Method

R. Zayer, C. Rossl, Z. Karni and H. P. Seidel.
Harmonic Guidance for Surface Deformation. EG2005.
Y. Lipman, O. Sorkine, D. Levin and D. Cohen-Or.
Linear rotation-invariant coordinates for meshes.
Siggraph2005.
23
Discrete Form (SIG05)
First Discrete Form
24
Discrete Form (SIG05)
Second Discrete Form
25
Local Frame (SIG05)
  • Discrete Frame at each vertex

forms a right-hand orthonormal basis.
26
First Pass (EG05)
  • Harmonic guidance for local frame

Boundary conditions 1 edited vertex 0 fixed
vertex
1
0
  • Scaling
  • Rotation

27
Second Pass (SIG05)
  • Solving vertex position

28
Second Pass
  • Solving vertex position

Normal Equation
29
Some Results
30
Computation
  • First Pass
  • Second Pass

Multigrid Method
31
Multigrid Method
defect equation
coarsest level
32
Performance
33
Performance
34
Conclusion
  • Computation Method for large mesh

35
Editing Arbitrary Deforming Surface Animations
  • S. Kircher, M. Garland
  • University of Illinois at Urbana-Champaign

36
Problem
Deforming Surface
Editing Surface
37
(No Transcript)
38
Pyramid Scheme
  • Quadric Error Metric

M. Garland and P. S. Heckbert. Surface
simplification using quadric error metrics.
SIGGRAPH97.
39
Pyramid Scheme
Detail vector
Coarse
Fine
2nd-order divided difference
Sig99
Construct by and adding detail
vectors for level k.
40
Adaptive Transform
41
Adaptive Transform
  • Multilevel Meshes (Sig05)

Reclustering
is generated from by improving its
error with respect to
Swap
42
  • Basis Smoothing
  • Blockification
  • Vertex Teleportation

PRE-processing Time-varying multiresolution
transform for a given animation sequence.
43
Editing Tool
  • Direct Manipulation

level 0
level k
44
Editing Tool
  • Direct Manipulation

45
Editing Tool
  • Direct Manipulation

46
Multiresolution Embossing
Multiresolution set of Edit
47
(No Transcript)
48
Conclusion
  • Multiresolution Edit

49
The End
Write a Comment
User Comments (0)
About PowerShow.com