Title: Symmetric Weighted Matching for Indefinite Systems
1Symmetric Weighted Matching for Indefinite Systems
- Iain Duff, RAL and CERFACS
- John Gilbert, MIT and UC Santa Barbara
- June 21, 2002
2Symmetric indefinite systems Block LDLT
- Optimization, interior eigenvalues, . . .
- Factor A L D L
- L is unit lower triangular
- D is block diagonal with small symmetric blocks
3Symmetric indefinite systems Block LDLT
- Optimization, interior eigenvalues, . . .
- Factor A L D L
- L is unit lower triangular
- D is block diagonal with small symmetric blocks
Static pivoting after preprocessing by weighted
matching
4TRAJ06B
- optimal control (Boeing)
- condest 1.4e6
- inertia (794, 0, 871)
5TRAJ06B permuted
- optimal control (Boeing)
- condest 1.4e6
- inertia (794, 0, 871)
- 794 2-by-2 pivots, 77 1-by-1 pivots
6TRAJ06B factor, solve, iterative refinement
- optimal control (Boeing)
- condest 1.4e6
- inertia (794, 0, 871)
- 794 2-by-2 pivots, 77 1-by-1 pivots
- factor nz 29,842
- max L 550
- iterations 2
- rel residual 3.7e-14
- AGL nz 40,589
- GESP nz 53,512
- GEPP nz 432,202
7Symmetric matrix and graph
- Hollow vertex zero diagonal element
8Symmetric matrix, nonsymmetric matching
- Perfect matching in A disjoint directed
cycles that cover every vertex of G
9Symmetric matrix, symmetric matching
3
1
5
2
3
4
1
4
5
2
3
4
2
1
5
G(A)
A
- Theorem (easy) Any even cycle can be
converted to a set of 2-cycles without
decreasing the weight of the matching
10What about odd cycles?
- Breaking up odd cycles may decrease weight
11What about odd cycles?
1
1
5
2
3
4
1
5
2
2
3
4
3
4
5
G(A)
A
- Breaking up odd cycles may decrease weight
- Can break up odd cycles of length more than k
and keep weight at least (k1)/(k2) times max
12What about odd cycles?
1
1
5
2
3
4
1
5
2
2
3
4
3
4
5
G(A)
A
- Breaking up odd cycles may decrease weight
- Can break up odd cycles of length more than k
and keep weight at least (k1)/(k2) times
max - But, may need to defer singular pivots
13BlockPerm Static block pivot permutation
- Find nonsymmetric max weight matching (MC64)
- Break up long cycles
- Permute symmetrically to make pivot blocks
contiguous - Permute blocks symmetrically for low fill
(approx minimum degree) - Move any singular pivots to end (caused by odd
cycles or structural rank deficiency) - Factor A LDL without row/col interchanges
(possibly fixing up bad pivots) - Solve, and improve solution by iterative
refinement
14SAWPATH
- optimization (RAL)
- condest 2e17
- inertia (776, 0, 583)
- 580 2-by-2 pivots,199 1-by-1 pivots
- factor nz 5,988
- max L 9e14
- iterations 1
- rel residual 4.4e-9
- MA57 nz 8,355 (best u)
- GESP nz 34,060
- GEPP nz 331,344
15LASER
- optimization
- inertia (1000, 2, 2000)
- 1000 2-by-2 pivots,1002 1-by-1 pivots (2
singular) - factor nz 7,563
- max L 1.6
- iterations 0
- rel residual 6.8e-17
- GESP nz 11,001
- GEPP nz 10,565 (rank wrong)
16DUFF320
- optimization (RAL)
- inertia (100, 120, 100)
- 100 2-by-2 pivots (3 singular)
- 120 1-by-1 pivots (all singular)
- factor nz 685
- max L 3.4e8
- iterations 2
- rel residual 3.0
- MA57 nz 2,848
- GESP nz 1,583
- GEPP nz 1,500 (no solve)
17DUFF320, take 2 Magic permutation
- optimization (RAL)
- inertia (100, 120, 100)
- 100 2-by-2 pivots (none singular)
- 120 1-by-1 pivots (all singular)
18DUFF320, take 2 Magic permutation
- optimization (RAL)
- inertia (100, 120, 100)
- 100 2-by-2 pivots (none singular)
- 120 1-by-1 pivots (all singular)
- factor nz 722
- max L 1.0
- iterations 0
- rel residual 0.0
19DUFF320, take 3 Identity block
- optimization (RAL)
- inertia (100, 0, 220)
- 100 2-by-2 pivots
- 120 1-by-1 pivots
- factor nz 1907
- max L 1
- iterations 1
- rel residual 1.7e-15
- GESP nz 2,929
- GEPP nz 3,554
20Questions
- Judicious dynamic pivoting (e.g. MA57)
- Preconditioning iterative methods
- Combinatorial methods to seek good block diagonal
directly (high weight, well-conditioned, sparse) - Symmetric equilibration / scaling
- Better fixups for poor static pivots
- Well hope to get some boundedness from
hyperbolic sines Burns Demmel 2002
21Questions
- Judicious dynamic pivoting (e.g. MA57)
- Preconditioning iterative methods
- Combinatorial methods to seek good block diagonal
directly (high weight, well-conditioned, sparse) - Symmetric equilibration / scaling
- Better fixups for poor static pivots
- Well hope to get some boundedness from
hyperbolic sines Burns Demmel 2002
22BCSSTK24
- structures (Boeing)
- condest 6e11
- inertia (0, 0, 3562)
- no 2-by-2 pivots,3562 1-by-1 pivots
- factor nz 289,191
- max L 410
- iterations 2
- rel residual 2.2e-16
- AGL nz 299,000
- Cholesky nz 289,191
- GEPP nz 1,217,475
23DUFF320, take 2 Magic permutation
- optimization (RAL)
- inertia (100, 120, 100)
- 100 2-by-2 pivots (none singular)
- 120 1-by-1 pivots (all singular)
24DUFF33
- optimization (RAL)
- inertia (9, 15, 9)
- 9 2-by-2 pivots (1 singular)
- 15 1-by-1 pivots (all singular)
- factor nz 62
- max L 7.0e7
- iterations 1
- rel residual 3.0
- MA57 nz
- GESP nz
- GEPP nz
25DUFF33, take 2 Magic permutation
- optimization (RAL)
- inertia (9, 15, 9)
- 9 2-by-2 pivots (none singular)
- 15 1-by-1 pivots (all singular)
- factor nz 51
- max L 1.0
- iterations 0
- rel residual 0.0
26DUFF33, take 2 L with magic permutation
- optimization (RAL)
- inertia (9, 15, 9)
- 9 2-by-2 pivots (none singular)
- 15 1-by-1 pivots (all singular)
- factor nz 51
- max L 1.0
- iterations 0
- rel residual 0.0
27DUFF33, take 2 D with magic permutation
- optimization (RAL)
- inertia (9, 15, 9)
- 9 2-by-2 pivots (none singular)
- 15 1-by-1 pivots (all singular)
- factor nz 51
- max L 1.0
- iterations 0
- rel residual 0.0