Symmetric Weighted Matching for Indefinite Systems - PowerPoint PPT Presentation

About This Presentation
Title:

Symmetric Weighted Matching for Indefinite Systems

Description:

Symmetric Weighted Matching for Indefinite Systems. Iain Duff, RAL and CERFACS ... D is block diagonal with small symmetric blocks ... – PowerPoint PPT presentation

Number of Views:36
Avg rating:3.0/5.0
Slides: 28
Provided by: JohnGi84
Category:

less

Transcript and Presenter's Notes

Title: Symmetric Weighted Matching for Indefinite Systems


1
Symmetric Weighted Matching for Indefinite Systems
  • Iain Duff, RAL and CERFACS
  • John Gilbert, MIT and UC Santa Barbara
  • June 21, 2002

2
Symmetric indefinite systems Block LDLT
  • Optimization, interior eigenvalues, . . .
  • Factor A L D L
  • L is unit lower triangular
  • D is block diagonal with small symmetric blocks

3
Symmetric indefinite systems Block LDLT
  • Optimization, interior eigenvalues, . . .
  • Factor A L D L
  • L is unit lower triangular
  • D is block diagonal with small symmetric blocks

Static pivoting after preprocessing by weighted
matching
4
TRAJ06B
  • optimal control (Boeing)
  • condest 1.4e6
  • inertia (794, 0, 871)

5
TRAJ06B permuted
  • optimal control (Boeing)
  • condest 1.4e6
  • inertia (794, 0, 871)
  • 794 2-by-2 pivots, 77 1-by-1 pivots

6
TRAJ06B factor, solve, iterative refinement
  • optimal control (Boeing)
  • condest 1.4e6
  • inertia (794, 0, 871)
  • 794 2-by-2 pivots, 77 1-by-1 pivots
  • factor nz 29,842
  • max L 550
  • iterations 2
  • rel residual 3.7e-14
  • AGL nz 40,589
  • GESP nz 53,512
  • GEPP nz 432,202

7
Symmetric matrix and graph
  • Hollow vertex zero diagonal element

8
Symmetric matrix, nonsymmetric matching
  • Perfect matching in A disjoint directed
    cycles that cover every vertex of G

9
Symmetric matrix, symmetric matching
3
1
5
2
3
4
1
4
5
2
3
4
2
1
5
G(A)
A
  • Theorem (easy) Any even cycle can be
    converted to a set of 2-cycles without
    decreasing the weight of the matching

10
What about odd cycles?
  • Breaking up odd cycles may decrease weight

11
What about odd cycles?
1
1
5
2
3
4
1
5
2
2
3
4
3
4
5
G(A)
A
  • Breaking up odd cycles may decrease weight
  • Can break up odd cycles of length more than k
    and keep weight at least (k1)/(k2) times max

12
What about odd cycles?
1
1
5
2
3
4
1
5
2
2
3
4
3
4
5
G(A)
A
  • Breaking up odd cycles may decrease weight
  • Can break up odd cycles of length more than k
    and keep weight at least (k1)/(k2) times
    max
  • But, may need to defer singular pivots

13
BlockPerm Static block pivot permutation
  • Find nonsymmetric max weight matching (MC64)
  • Break up long cycles
  • Permute symmetrically to make pivot blocks
    contiguous
  • Permute blocks symmetrically for low fill
    (approx minimum degree)
  • Move any singular pivots to end (caused by odd
    cycles or structural rank deficiency)
  • Factor A LDL without row/col interchanges
    (possibly fixing up bad pivots)
  • Solve, and improve solution by iterative
    refinement

14
SAWPATH
  • optimization (RAL)
  • condest 2e17
  • inertia (776, 0, 583)
  • 580 2-by-2 pivots,199 1-by-1 pivots
  • factor nz 5,988
  • max L 9e14
  • iterations 1
  • rel residual 4.4e-9
  • MA57 nz 8,355 (best u)
  • GESP nz 34,060
  • GEPP nz 331,344

15
LASER
  • optimization
  • inertia (1000, 2, 2000)
  • 1000 2-by-2 pivots,1002 1-by-1 pivots (2
    singular)
  • factor nz 7,563
  • max L 1.6
  • iterations 0
  • rel residual 6.8e-17
  • GESP nz 11,001
  • GEPP nz 10,565 (rank wrong)

16
DUFF320
  • optimization (RAL)
  • inertia (100, 120, 100)
  • 100 2-by-2 pivots (3 singular)
  • 120 1-by-1 pivots (all singular)
  • factor nz 685
  • max L 3.4e8
  • iterations 2
  • rel residual 3.0
  • MA57 nz 2,848
  • GESP nz 1,583
  • GEPP nz 1,500 (no solve)

17
DUFF320, take 2 Magic permutation
  • optimization (RAL)
  • inertia (100, 120, 100)
  • 100 2-by-2 pivots (none singular)
  • 120 1-by-1 pivots (all singular)

18
DUFF320, take 2 Magic permutation
  • optimization (RAL)
  • inertia (100, 120, 100)
  • 100 2-by-2 pivots (none singular)
  • 120 1-by-1 pivots (all singular)
  • factor nz 722
  • max L 1.0
  • iterations 0
  • rel residual 0.0

19
DUFF320, take 3 Identity block
  • optimization (RAL)
  • inertia (100, 0, 220)
  • 100 2-by-2 pivots
  • 120 1-by-1 pivots
  • factor nz 1907
  • max L 1
  • iterations 1
  • rel residual 1.7e-15
  • GESP nz 2,929
  • GEPP nz 3,554

20
Questions
  • Judicious dynamic pivoting (e.g. MA57)
  • Preconditioning iterative methods
  • Combinatorial methods to seek good block diagonal
    directly (high weight, well-conditioned, sparse)
  • Symmetric equilibration / scaling
  • Better fixups for poor static pivots
  • Well hope to get some boundedness from
    hyperbolic sines Burns Demmel 2002

21
Questions
  • Judicious dynamic pivoting (e.g. MA57)
  • Preconditioning iterative methods
  • Combinatorial methods to seek good block diagonal
    directly (high weight, well-conditioned, sparse)
  • Symmetric equilibration / scaling
  • Better fixups for poor static pivots
  • Well hope to get some boundedness from
    hyperbolic sines Burns Demmel 2002

22
BCSSTK24
  • structures (Boeing)
  • condest 6e11
  • inertia (0, 0, 3562)
  • no 2-by-2 pivots,3562 1-by-1 pivots
  • factor nz 289,191
  • max L 410
  • iterations 2
  • rel residual 2.2e-16
  • AGL nz 299,000
  • Cholesky nz 289,191
  • GEPP nz 1,217,475

23
DUFF320, take 2 Magic permutation
  • optimization (RAL)
  • inertia (100, 120, 100)
  • 100 2-by-2 pivots (none singular)
  • 120 1-by-1 pivots (all singular)

24
DUFF33
  • optimization (RAL)
  • inertia (9, 15, 9)
  • 9 2-by-2 pivots (1 singular)
  • 15 1-by-1 pivots (all singular)
  • factor nz 62
  • max L 7.0e7
  • iterations 1
  • rel residual 3.0
  • MA57 nz
  • GESP nz
  • GEPP nz

25
DUFF33, take 2 Magic permutation
  • optimization (RAL)
  • inertia (9, 15, 9)
  • 9 2-by-2 pivots (none singular)
  • 15 1-by-1 pivots (all singular)
  • factor nz 51
  • max L 1.0
  • iterations 0
  • rel residual 0.0

26
DUFF33, take 2 L with magic permutation
  • optimization (RAL)
  • inertia (9, 15, 9)
  • 9 2-by-2 pivots (none singular)
  • 15 1-by-1 pivots (all singular)
  • factor nz 51
  • max L 1.0
  • iterations 0
  • rel residual 0.0

27
DUFF33, take 2 D with magic permutation
  • optimization (RAL)
  • inertia (9, 15, 9)
  • 9 2-by-2 pivots (none singular)
  • 15 1-by-1 pivots (all singular)
  • factor nz 51
  • max L 1.0
  • iterations 0
  • rel residual 0.0
Write a Comment
User Comments (0)
About PowerShow.com