Long Baseline Neutrino Oscillation Experiments - PowerPoint PPT Presentation

1 / 25
About This Presentation
Title:

Long Baseline Neutrino Oscillation Experiments

Description:

Long Baseline Neutrino Oscillation Experiments. Alfons Weber ... discriminates between nm nt and nm. ns A. Weber. LBL Experiments. 10. ? CC Energy Analysis ... – PowerPoint PPT presentation

Number of Views:44
Avg rating:3.0/5.0
Slides: 26
Provided by: web5169
Category:

less

Transcript and Presenter's Notes

Title: Long Baseline Neutrino Oscillation Experiments


1
Long Baseline Neutrino Oscillation Experiments
  • Alfons WeberUniversity of Oxfordfor theMINOS
    OPERA CollaborationsHEP 2001, BudapestJuly 18,
    2001

2
  • Beam travels 730 km toSoudan Minnesota
  • Sagitta10 km
  • 1km wide at destination

3
NuMI Beam Energy
  • Fermilab MI
  • E 120 GeV
  • N 4x1013 p / pulse
  • Every 2 seconds
  • 10 msec spill
  • Tuneable neutrino energy
  • Select energy to matchmass difference
  • high 7 - 30 ? 10-3 eV2
  • medium 3 - 10 ? 10-3 eV2
  • low 1 - 5 ? 10-3 eV2

4
MINOS Collaboration
Around 180 Physicists and Engineers
IHEP-Beijing ?Athens ? Dubna ? ITEP-Moscow ?
Lebedev ? Protvino ? Cambridge ? Oxford
Rutherford ? Sussex ? University College London
? Argonne ? Brookhaven ? Caltech ? Chicago ?
Elmhurst ? Fermilab ? James Madison ? Harvard ?
Illinois ? Indiana ? Livermore ? Macalester ?
Minnesota ? Northwestern ? Pittsburgh ? South
Carolina ? Stanford ? Texas-Austin ? Texas AM ?
Tufts ? Western Washington ? Wisconsin
5
MINOS Far Detector
  • 2 Super-modules 2.7 kiloton each
  • 486 planes of steel and scintillator
  • 96 scintillator strips/plane
  • read out at both sides with multi-anode PMTs
  • Toroidal magnetic field(1.5 T at 2 m radius)

6
MINOS Scintillator Module
  • Extruded scintillator, 4.1 cm wide
  • Two-ended WLS fiber
  • readout.
  • Strips assembled into
  • 20 or 28-wide modules.
  • WLS fibers routed to
  • optical connectors.
  • Light routed from modules
  • to PMTs via clear fibers.
  • 8 Fibers/PMT pixel in far
  • detector. (Fibers separated
  • by 1m in a single plane.)
  • 1 Fiber/PMT pixel in near
  • detector (avoids overlaps).
  • Multi-pixel PMTs Hamamatsu M16 (far), M64
    (near)

Clear Fiber Ribbon Cable (2-6 m)
7
MINOS Plane
2-m wide, 0.5-inch thick, steel plates
Bottom steel plane layer
Scintillator plane Orientations alternate ?90o in
successive planes
Top steel plane layer
8
MINOS Oscillation Physics
  • Several channels to analyse neutrino oscillations
  • T-Test
  • ne appearance
  • Combination of all analysis will reveal mixing
    parameters
  • Dm2
  • sin22q
  • flavour

µ
? µ
nm disappearance
hadrons
5 m
nt appearance
hadrons
? µ
? µ
1.5 m
9
T-Test
  • Oscillations or not?
  • Compare number of short and long events in near
    and far detector
  • long events CC nm
  • short eventsNC nm, ne, nt CC ne, nt

10
?µ CC Energy Analysis
  • Select ?µ charge current events and reconstruct
    neutrino energy
  • Resolution functions
  • Compare energy spectrum in near and far detector
  • Measure ?m2 and sin22?

range, B field
calorimetry
?m2
sin22?
11
?µ Disappearance Results
12
CNGS Beam
  • Baseline 730km
  • ltE?gt 17 GeV
  • optimised for t appearance
  • CERN SPS
  • Ep 400 GeV
  • 4.81013 ppp
  • cycle 6 - 27.6 sec
  • 7.61019 pot/year

13
OPERA Collaboration
METU, Ankara, Turkey ? LAPP and Université de
Savoie, Annecy, France ? INFN and Bari
University, Bari, Italy ? IHEP, Beijing, China PR
? Humboldt University,Berlin, Germany ? Bern
University, Bern, Switzerland ? INFN and Bologna
University, Bologna, Italy ? IIHE (ULB-VUB),
Brussels, Belgium ? Joint Institute for Nuclear
Research (JINR), Dubna, Russia ? Laboratori
Nazionali di Frascati, INFN Frascati, Italy ?
Toho University, Funabashi, Japan ? CERN, Geneva,
Switzerland ? Märkische Fachhochschule FB
Elektrotechnik, Hagen, Germany ? Technion, Haifa,
Israel ? Hamburg University, Hamburg, Germany ?
High Energy Physics Group Shandong University,
Jinan, Shandong, China PR ? Aichi Educational
University, Kariya, Japan ? Kobe University,
Kobe, Japan ? IPNL and Université C.Bernard,
Lyon, France ? INR, ITEP and MEPHI, Moscow,
Russia ? Münster University, Münster, Germany ?
Nagoya University, Nagoya, Japan ? INFN and
"Federico II" University, Naples, Italy ? LAL and
Université Paris-Sud, Orsay, France ? INFN and
Padova University, Padova, Italy ? INFN and "La
Sapienza" University, Rome, Italy ? Rostock
University, Rostock, Germany ? INFN and Salerno
University, Salerno, Italy ? IRES, Strasbourg,
France ? Utsunomiya University, Utsunomiya, Japan
? Rudjer Boskovic Institute (IRB), Zagreb,
Croatia
14
The OPERA Experiment
super module
15
Muon Identification
  • Reject charm background
  • Tag and analyse t?µ
  • measure E? spectrum with
  • target
  • spectrometer (calorimeter)
  • Fe walls 7.1 ?int instrumented
  • identify muons
  • shower energy measurement
  • Spectrometer
  • 3 external high resolution drift tubes

16
Target section
  • Emulsion-Scintillator strip Hybrid Target
  • Tracker task
  • select bricks efficiently
  • High scanning power low background allow
    coarse tracking

Selected bricks extracted daily using dedicated
robot
17
Scintillator Strip Target Trackers

WLS fibres
PMT
64 strips
unit
planes
6.7 m
  • Scintillator strips (2.6cm wide, 1cm thick)
  • Light read out at both WLS fibre ends
  • Multi anode 64 ch. PMT (baseline)
  • Minimum 6 p.e.
  • Probability for 0 p.e. 0.2

18
Emulsion Brick
Origami packed ECC brick for OPERA
  • Vacuum packing
  • Protection against light and humidity
    variations.
  • Keep the position between films and lead plates.
  • Vacuum preserved over 10 years

n
10X0 ( 56 emulsion films )
12.5cm
235k bricks for 3 super modules
19
nt Candidate Classes
Long decays? reconstruct kink topology
Short decays ? detect large impact
parameter track
Loose cut to reject low momentum tracks
20
Selection Efficiencies (in and including BR)
  • Muon ID
  • track in brick
  • MIP in scintillator tracker
  • momentum measurement in dipolar magnet
  • Electron/Hadron ID
  • track in brick
  • shower in brick E
  • multiple scattering
  • number of tracks
  • distinguish by fit to shower profile

weighted sum of DIS and QE events
21
Sensitivity
(average 90 CL upper limit for a large number
of experiment in the absence of a signal)
5 years data taking
?m2 1.2x10-3 eV2 at
full mixing sin2 (2?) 6.0x10-3
at large ?m2
22
Determination of ?m2
(mixing constrained by SuperK)
assuming the observation of a number of events
corresponding to those expected for the given ?m2
Probability to observe SuperK signal
23
Schedule
  • MINOS
  • approved (1999)
  • FD installation (now)
  • cosmics (2001)
  • ND installation (2003)
  • neutrino beam (2004/5)
  • physics results 2 years
  • OPERA
  • approved (2001)
  • installation (2002)
  • cosmics (2004/5)
  • Filling emulsion (2004)
  • neutrino beam (2005)
  • physics results 3-5 years

Exciting time! The 2 complementary experiments
will reveal the exact nature of the atmospheric
neutrino anomaly and measure the oscillation
parameters.
24
Particle ID
(1) Different energy loss by multiple scattering
E(x)E0e (-x/X0) for electrons
c2e E(x)E0(1-(dE/dx)x) for hadrons c2h (2)
Detection of electromagnetic shower Requires
low background track density ? controlled fading
Sensitive to electrons close to the Pb critical
energy
25
Expected background
(5 years data taking)
Write a Comment
User Comments (0)
About PowerShow.com