Fast%20Fourier%20Transform - PowerPoint PPT Presentation

About This Presentation
Title:

Fast%20Fourier%20Transform

Description:

... Periodic Waves Can be Generated by Combining Sin and Cos Waves of Different Frequencies ... Sample consists of n points, wave amplitude at fixed intervals of time: ... – PowerPoint PPT presentation

Number of Views:37
Avg rating:3.0/5.0
Slides: 11
Provided by: peterm8
Learn more at: http://cs.baylor.edu
Category:

less

Transcript and Presenter's Notes

Title: Fast%20Fourier%20Transform


1
Fast Fourier Transform
2
Definition
  • All Periodic Waves Can be Generated by Combining
    Sin and Cos Waves of Different Frequencies
  • Number of Frequencies may not be finite
  • Fourier Transform Decomposes a Periodic Wave into
    its Component Frequencies

3
DFT Definition
  • Sample consists of n points, wave amplitude at
    fixed intervals of time(p0,p1,p2, ..., pn-1) (n
    is a power of 2)
  • Result is a set of complex numbers giving
    frequency amplitudes for sin and cos components
  • Points are computed by polynomialP(x)p0p1xp2x
    2 ... pn-1xn-1

4
DFT Definition, continued
  • The complete DFT is given byP(1), P(w), P(w2),
    ... ,P(wn-1)
  • w Must be a Primitive nth Root of Unity
  • wn1, if 0ltiltn then wi ¹ 1

5
Primitive Roots of Unity
  • wi is an nth root of unity (not primitive)
  • wn/2 -1
  • if 0jn/2-1 then w(n/2)j -wj
  • if n is even and w is a primitive nth root of
    unity, then w2 is a primitive n/2 root of unity
  • Example w cos(2p/n) isin(2p/n)

6
Divide and Conquer
  • Compute an n-point DFT using one or more
    n/2-point DFTs
  • Need to find Terms involving w2 in following
    polynomial
  • P(w)p0p1wp2w2p3w3p4w4 ... pn-1wn-1

Here They Are
7
Even/Odd Separation
  • P(w) P1(w)P2(w)
  • P1(w)p0p2w2p4w4 ... pn-2wn-2
  • P1(w)Pe (w2)p0p2wp4w1...pn-2w(n-2)/2
  • P2(w)p1wp3w3p5w5 ... pn-1wn-1
  • P2(w) w P3(w)p1p3w2... pn-1wn-2
  • P3(w)Po(w2) p1p3w... pn-1w(n-2)/2
  • P(w) Pe(w2) wPo(w2)
  • Pe Po come from n/2 point FFTs

8
The Algorithm
DFFT(PArrayk,mInteger)Array begin If k0
Then DFFT0P0DFFT1P0 Else
Evens DFFT(EvenElemOf(P),k-1,2m) Odds
DFFT(OddElemOf(P),k-1,2m) For i 0 to
2k-1-1 Do x Oddsjwmj
DFFTj Evensj x DFFT2k-1j
Evensj - x End For End If end
9
Iterative Algorithm
For i 0 To n-2 By 2 Do Ti pf(i)
pf(t1) Ti1 pf(i) - pf(t1) End
For m n/2 n 2 For k lg n - 2 To 0 By
-1 Do m m/2 n 2n For i 0 To
(2k-1)n By n Do For j 0 To (n/2)-1 Do
x wmj Tin/2j Tin/2j
Tij - x Tij Tij x
End For End For End For
10
What is f(i)?
i
f(i)
  • 000 000 - 000 000 - 000 000
  • 001 010 - 010 100 - 100 100
  • 010 100 - 100 010 - 010 010
  • 011 110 - 110 110 - 110 110
  • 100 001 - 001 001 - 001 001
  • 101 011 - 011 101 - 101 101
  • 110 101 - 101 011 - 011 011
  • 111 111 - 111 111 - 111 111
Write a Comment
User Comments (0)
About PowerShow.com