The Subjective Experience of Feelings Past - PowerPoint PPT Presentation

1 / 69
About This Presentation
Title:

The Subjective Experience of Feelings Past

Description:

Sensitive to blob-defining-threshold. Signal magnitude ... IF Never more than 1 blob. SCANLab. http://www.columbia.edu/cu/psychology/tor ... – PowerPoint PPT presentation

Number of Views:21
Avg rating:3.0/5.0
Slides: 70
Provided by: kevin482
Category:

less

Transcript and Presenter's Notes

Title: The Subjective Experience of Feelings Past


1
  • Thresholding and multiple comparisons

2
Information for making inferences on activation
  • Signal location
  • Local maximum no inference in SPM
  • Could extract peak coordinates and test
  • (e.g., Woods lab, Ploghaus, 1999)
  • Center-of-mass no inference
  • Sensitive to blob-defining-threshold
  • Signal magnitude
  • Local contrast intensity P-values ( CIs)
  • Spatial extent
  • Cluster volume P-value, no CIs
  • Sensitive to blob-defining-threshold
  • Signal timing
  • No inference in SPM but see Aguirre 1998
    Bellgowan 2003 Miezin et al. 2000, Lindquist
    Wager, 2007

3
Three levels of inference
  • Voxel-level
  • Most spatially specific, least sensitive
  • Cluster-level
  • Less spatially specific, more sensitive
  • Set-level
  • No spatial specificity (no locatization)
  • Can be most sensitive

4
Voxel-level Inference
  • Retain voxels above ?-level threshold u?
  • Gives best spatial specificity
  • The null hyp. at a single voxel can be rejected

u?
space
Significant Voxels
No significant Voxels
5
Cluster-level Inference
  • Two step-process
  • Define clusters by arbitrary threshold uclus
  • Retain clusters larger than ?-level threshold k?

uclus
space
Cluster not significant
Cluster significant
k?
k?
6
Cluster-level Inference
  • Typically better sensitivity
  • Worse spatial specificity
  • The null hyp. of entire cluster is rejected
  • Only means that one or more voxels in cluster
    active

uclus
space
Cluster not significant
Cluster significant
k?
k?
7
Set-level Inference
  • Count number of blobs c
  • c depends on by uclus blob size k threshold
  • Worst spatial specificity
  • Only can reject global null hypothesis

uclus
space
k
k
Here c 1 only 1 cluster larger than k
8
Multiple comparisons
9
Hypothesis Testing
  • Null Hypothesis H0
  • Test statistic T
  • t observed realization of T
  • ? level
  • Acceptable false positive rate
  • Level ? P( Tgtu? H0 )
  • Threshold u? controls false positive rate at
    level ?
  • P-value
  • Assessment of t assuming H0
  • P( T gt t H0 )
  • Prob. of obtaining stat. as largeor larger in a
    new experiment
  • P(DataNull) not P(NullData)

10
Multiple Comparisons Problem
  • Which of 100,000 voxels are sig.?
  • ?0.05 ? 5,000 false positive voxels
  • Which of (random number, say) 100 clusters
    significant?
  • ?0.05 ? 5 false positives clusters
  • Expected false positives for independent tests
  • ? Ntests

11
MCP SolutionsMeasuring False Positives
  • Familywise Error Rate (FWER)
  • Familywise Error
  • Existence of one or more false positives
  • FWER is probability of familywise error
  • False Discovery Rate (FDR)
  • FDR E(V/R)
  • R voxels declared active, V falsely so
  • Realized false discovery rate V/R
  • (but dont know what it is with real data!)

12
MCP SolutionsMeasuring False Positives
  • Familywise Error Rate (FWER)
  • Familywise Error
  • Existence of one or more false positives
  • FWER is probability of familywise error
  • False Discovery Rate (FDR)
  • FDR E(V/R)
  • R voxels declared active, V falsely so
  • Realized false discovery rate V/R

13
FWE Multiple comparisons terminology
  • Family of (null) hypotheses
  • Hk k ? ? 1,,K
  • Familywise Type I error
  • weak control omnibus test
  • Pr(reject H? ? H?? true) ? ?
  • Pr falsely rejecting the global null
  • If reject, can only say 1 or more Hk is false
    anything, anywhere ?
  • strong control localising test
  • Pr(reject HW ? HW) ? ?
  • Pr rejecting any true null H lt alpha
  • If reject, knowanything, where ?
  • Adjusted pvalues
  • test level at which reject Hk

14
Voxel-level test
p 0.05
  • Threshold u ? (critical t-value)
  • tk gt u? ? reject Hk
  • Weak control
  • reject any Hk ? reject H?
  • reject H? if t?max gt u?
  • Adjusted p values
  • Pr(T?max gt tk ? H?)

p 0.0001
p 0.0000001
u??
15
Controlling FWE withBonferroni
16
FWE MCP Solutions Bonferroni
  • For a statistic image T...
  • Ti ith voxel of statistic image T, where i
    1V
  • ...use ? ?0/V
  • ?0 desired FWER level (e.g. 0.05)
  • ? new alpha level to achieve ?0 corrected
  • V number of voxels
  • u? ?-level statistic threshold, P(Ti ? u?) ?
  • By Bonferroni inequality...
  • FWER P(FWE) P( ?i Ti ? u? H0) ? ?i
    P( Ti ? u? H0 )
  • ?i ? ?i (?0 /V)
  • ?0 (corrected)

P(any T exceeds mu under null)
Conservative under correlation Independent V
tests Some dep. ? tests Total dep. 1 test
Upper bound sum of P-values
17
Controlling FWE withRandom field theory
18
SPM approachRandom fields
  • Consider statistic image as lattice
    representation of a continuous random field
  • Use results from continuous random field theory

? lattice representation
19
FWER MCP Solutions Controlling FWER w/ Max
  • FWER distribution of maximum
  • FWER P(FWE) P( ?i Ti ? u Ho)
  • P(any t value exceeds mu under null) P(
    maxi Ti ? u Ho)
  • P(max t value exceeds mu under null)
  • 100(1-?)ile of max distn controls FWER
  • FWER P( maxi Ti ? u? Ho) ?
  • where
  • u? F-1max (1-?)
  • .

Mu such that the max only exceeds mu alpha of
the time
Distribution of maxima
u?
20
FWER MCP SolutionsRandom Field Theory
  • Euler Characteristic ?u
  • Topological Measure
  • blobs - holes
  • At high thresholds,just counts blobs
  • FWER P(Max voxel ? u Ho) P(One or more
    blobs Ho) ? P(?u ? 1 Ho) ? E(?u Ho)

Threshold
Random Field
IF No holes
IF Never more than 1 blob
Suprathreshold Sets
21
Random Field Intuition
  • Corrected P-value for voxel value t
  • Pc P(max T gt t) ? E(?t) ? ?(?) ?1/2 t2
    exp(-t2/2)
  • Statistic value t increases
  • Pc decreases (but only for large t)
  • Search volume increases
  • Pc increases (more severe MCP)
  • Roughness increases (Smoothness decreases)
  • Pc increases (more severe MCP)

volume
roughness
t-value
22
Random Field TheorySmoothness Estimation
  • Smoothness estdfrom standardizedresiduals
  • Var. of gradientsyields resels pervoxel (RPV)
  • RPV image
  • Local roughness
  • Can transform into local smoothness est.
  • FWHM Img (RPV Img)-1/D
  • Dimension D, e.g. D 2 or 3

23
Random Field TheorySmoothness Parameterization
  • RESELS Resolution Elements
  • 1 RESEL FWHMx?? FWHMy?? FWHMz
  • RESEL Count R
  • R ?(?) ?1/2 / (4log2)3/2 ?(?) / (
    FWHMx?? FWHMy?? FWHMz )
  • Volume of search region in units of smoothness
  • Eg 10 voxels, 2.5 FWHM 4 RESELS
  • Beware RESEL misinterpretation
  • RESEL are not number of independent things in
    image
  • See Nichols Hayasaka, 2003, Stat. Meth. in Med.
    Res.
  • Do not Bonferroni correct based on resel count.

24
Random Field TheoryCluster Size Tests
  • Expected Cluster Size
  • E(S) E(N)/E(L)
  • S cluster size
  • N suprathreshold volume?(T gt uclus)
  • L number of clusters
  • E(N) ?(?) P( T gt uclus )
  • E(L) ? E(?u)
  • Assuming no holes

25
Random Field TheoryCluster Size Corrected
P-Values
  • Previous results give uncorrected P-value
  • Corrected P-value
  • Bonferroni
  • Correct for expected number of clusters
  • Corrected Pc E(L) Puncorr
  • Poisson Clumping Heuristic (Adler, 1980)
  • Corrected Pc 1 - exp( -E(L) Puncorr )

26
Random Field Theory Limitations
  • Sufficient smoothness
  • FWHM smoothness 3-4 voxel size (Z)
  • More like 10 for low-df T images
  • Smoothness estimation
  • Estimate is biased when images not sufficiently
    smooth
  • Multivariate normality
  • Virtually impossible to check
  • Several layers of approximations
  • Stationarity required for cluster size results
  • Cluster size results tend to be too lenient in
    practice!

27
Real Data
  • fMRI Study of Working Memory
  • 12 subjects, block design Marshuetz et al (2000)
  • Item Recognition
  • ActiveView five letters, 2s pause, view probe
    letter, respond
  • Baseline View XXXXX, 2s pause, view Y or N,
    respond
  • Second Level RFX
  • Difference image, A-B constructedfor each
    subject
  • One sample t test

28
Real DataRFT Result
  • Threshold
  • S 110,776
  • 2 ? 2 ? 2 voxels5.1 ? 5.8 ? 6.9 mmFWHM
    smoothness
  • u 9.870 (crit. T-value)
  • Result
  • 5 voxels abovethe threshold
  • 0.0063 minimumFWE-correctedp-value

-log10 p-value
29
Controlling FWER with permutation tests(e.g.,
SnPM)
30
Permutation TestToy Example
  • Data from V1 voxel in visual stim. experiment
  • A Active, flashing checkerboard B Baseline,
    fixation
  • 6 blocks, ABABAB Just consider block
    averages...
  • Null hypothesis Ho
  • No experimental effect, A B labels arbitrary
  • Statistic
  • Mean difference

31
Permutation TestToy Example
  • Under Ho
  • Consider all equivalent relabelings

32
Permutation TestToy Example
  • Under Ho
  • Consider all equivalent relabelings
  • Compute all possible statistic values

33
Permutation TestToy Example
  • Under Ho
  • Consider all equivalent relabelings
  • Compute all possible statistic values
  • Find 95ile of permutation distribution

34
Permutation TestToy Example
  • Under Ho
  • Consider all equivalent relabelings
  • Compute all possible statistic values
  • Find 95ile of permutation distribution

35
Permutation TestToy Example
  • Under Ho
  • Consider all equivalent relabelings
  • Compute all possible statistic values
  • Find 95ile of permutation distribution

0
4
8
-4
-8
36
Permutation TestStrengths
  • Requires only assumption of exchangeability
  • Under Ho, distribution unperturbed by permutation
  • Allows us to build permutation distribution
  • Subjects are exchangeable
  • Under Ho, each subjects A/B labels can be
    flipped
  • Permutation tests thus useful for 2nd level
    analysis!
  • fMRI scans not exchangeable under Ho
  • Due to temporal autocorrelation
  • Dont try permutation on individual subjects (but
    see, e.g., Bullmore for work on wavelet-based
    permutation)
  • BUT if experimental conditions are randomized,
    experimental labels are exchangeable within a
    subject

37
One-sample t-test with SnPM
  • Under H0, activation is symmetrically distributed
    around zero.
  • Permute signs on individual subjects contrast
    values to generate H0 t-distribution
  • Apply sign for each subject to whole maps
    preserve spatial correlation patterns
  • For each permutation, compute pseudo-t at each
    voxel, and save max.
  • 95th percentile of max pseudo-t distribution is
    FWER corrected p lt .05 (one-tailed).

38
Permutation TestExample
  • Permute!
  • 212 4,096 ways to flip 12 A/B labels
  • For each, note maximum of t image
  • .

39
uRF 9.87uBonf 9.805 sig. vox.
uPerm 7.67 58 sig. vox.
t11 Statistic, RF Bonf. Threshold
t11 Statistic, Nonparametric Threshold
40
Does this Generalize?RFT vs Bonf. vs Perm.
41
RFT vs Bonf. vs Perm.
42
19 df
FamilywiseErrorThresholds
  • RF Perm adapt to smoothness
  • Perm Truth close
  • Bonferroni close to truth for low smoothness

9 df
more
43
Performance Summary
  • Bonferroni
  • Not adaptive to smoothness
  • Not so conservative for low smoothness
  • Random Field
  • Adaptive
  • Conservative for low smoothness df
  • Permutation
  • Adaptive (Exact)

44
Understanding Performance Differences
  • RFT Troubles
  • Multivariate Normality assumption
  • True by simulation
  • Smoothness estimation
  • Not much impact
  • Smoothness
  • You need lots, more at low df
  • High threshold assumption
  • Doesnt improve for ?0 less than 0.05 (not shown)

Highhr
45
Controlling the False Discovery Rate
46
MCP SolutionsMeasuring False Positives
  • Familywise Error Rate (FWER)
  • Familywise Error
  • Existence of one or more false positives
  • FWER is probability of familywise error
  • False Discovery Rate (FDR)
  • FDR E(V/R)
  • R voxels declared active, V falsely so
  • Realized false discovery rate V/R

47
False Discovery Rate
  • For any threshold, all voxels can be cross
    classified
  • False Discovery Proportion
  • FDP V0R/(V1RV0R) V0R/NR
  • If NR 0, FDP 0
  • But only can observe NR, dont know V1R V0R
  • We control the expected FDP
  • FDR E(FDP)

48
False Discovery RateIllustration
Noise
Signal
SignalNoise
49
Control of Per Comparison Rate at 10
Percentage of Null Pixels that are False Positives
Control of Familywise Error Rate at 10
FWE
Occurrence of Familywise Error
Control of False Discovery Rate at 10
Percentage of Activated Pixels that are False
Positives
50
Benjamini HochbergProcedure
JRSS-B (1995)57289-300
  • Select desired limit q on FDR (e.g., 0.05)
  • Order p-values, p(1) ? p(2) ? ... ? p(V)
  • Let r be largest i such that
  • Reject all hypotheses corresponding to p(1),
    ... , p(r).

1
p(i)
p-value
  • Ignore c(V) for a moment if c(V) 1 and there
    is no signal, only 5 of the time we expect the
    lowest p-value to be lower than the boundary

i/V ? q/c(V)
0
0
1
i/V
51
Adaptiveness of Benjamini Hochberg FDR
Consider an increasing number of very significant
(p ? 0) voxels...
Threshold varies between Bonferroni uncorrected!
P-values when no signal (unif. dist)
Ordered p-values p(i)
P-value threshold when no signal p(1) ? (1/V)?
P-value thresholdwhen allsignal p(V) ? (V/V)?
Fractional index i/V
52
Benjamini Hochberg Procedure Details
  • c( V ) 1
  • Positive Regression Dependency on Subsets
  • P(X1?c1, X2?c2, ..., Xk?ck Xixi) is
    non-decreasing in xi
  • Only required of test statistics for which null
    true
  • Special cases include
  • Independence
  • Multivariate Normal with all positive
    correlations
  • Same, but studentized with common std. err.
  • c( V ) ?i1,...,V 1/i ? log(V)0.5772
  • Arbitrary covariance structure

Benjamini Yekutieli (2001).Ann.
Stat.291165-1188
53
1
p(i)
p-value
i/V ? q/c(V)
0
0
1
i/V
If threshold at lowest p-value, One voxel
declared sig m01 Pcrit q1/V (e.g.)
0.05/V Bonferroni threshold E(false pos) .05
1 5 of activated vox (1)
If threshold at largest p-value, V voxels
declared sig m0V Pcrit qV/V (e.g.)
0.05 Uncorrected threshold E(false pos) .05
V 5 of activated vox (V)
54
Benjamini HochbergKey Properties
  • FDR is controlled E(FDP) ? q m0/V
  • Conservative, if large fraction of nulls false
  • Adaptive
  • Threshold depends on amount of signal
  • More signal, More small p-values,More p(i) less
    than i/V ? q/c(V)

55
Controlling FDRVarying Signal Extent
p z
1
56
Controlling FDRVarying Signal Extent
  • red truly activated area
  • take-home hard to find small areas with FDR,
    even if small p-values.

p z
2
57
Controlling FDRVarying Signal Extent
p z
3
58
Controlling FDRVarying Signal Extent
p 0.000252 z 3.48
4
59
Controlling FDRVarying Signal Extent
p 0.001628 z 2.94
5
60
Controlling FDRVarying Signal Extent
p 0.007157 z 2.45
6
61
Controlling FDRVarying Signal Extent
p 0.019274 z 2.07
7
62
Real Data FDR Example
  • Threshold
  • Indep/PosDepu 3.83 (T-threshold)
  • Arb Covu 13.15 (T-threshold)
  • Result
  • 3,073 voxels aboveIndep/PosDep u
  • lt0.0001 minimumFDR-correctedp-value

FDR Threshold 3.833,073 voxels
63
Conclusions
  • Must account for multiplicity
  • Otherwise have a fishing expedition
  • FWER
  • Very specific, not very sensitive
  • FDR
  • Less specific, more sensitive
  • Adaptive
  • Good Power increases w/ amount of signal
  • Bad Number of false positives increases too

64
References
  • Most of this talk covered in these papers
  • TE Nichols S Hayasaka, Controlling the
    Familywise Error Rate in Functional Neuroimaging
    A Comparative Review. Statistical Methods in
    Medical Research, 12(5) 419-446, 2003.
  • TE Nichols AP Holmes, Nonparametric
    Permutation Tests for Functional Neuroimaging A
    Primer with Examples. Human Brain Mapping,
    151-25, 2001.
  • CR Genovese, N Lazar TE Nichols, Thresholding
    of Statistical Maps in Functional Neuroimaging
    Using the False Discovery Rate. NeuroImage,
    15870-878, 2002.

65
End of this section.
66
RFT DetailsUnified Formula
  • General form for expected Euler characteristic
  • ?2, F, t fields restricted search regions
    D dimensions
  • E?u(W) Sd Rd (W) rd (u)

Rd (W) d-dimensional Minkowski functional of
W function of dimension, space W and
smoothness R0(W) ?(W) Euler characteristic
of W R1(W) resel diameter R2(W) resel
surface area R3(W) resel volume
rd (W) d-dimensional EC density of Z(x)
function of dimension and threshold, specific
for RF type E.g. Gaussian RF r0(u) 1- ?(u)
r1(u) (4 ln2)1/2 exp(-u2/2) /
(2p) r2(u) (4 ln2) exp(-u2/2) /
(2p)3/2 r3(u) (4 ln2)3/2 (u2 -1) exp(-u2/2)
/ (2p)2 r4(u) (4 ln2)2 (u3 -3u) exp(-u2/2)
/ (2p)5/2
?
67
Random Field TheoryCluster Size Distribution
  • Gaussian Random Fields (Nosko, 1969)
  • D Dimension of RF
  • t Random Fields (Cao, 1999)
  • B Beta distn
  • Us ?2s
  • c chosen s.t.E(S) E(N) / E(L)

68
RFT DetailsExpected Euler Characteristic
  • E(?u) ? ?(?) ?1/2 (u 2 -1) exp(-u 2/2) / (2?)2
  • ? ? Search region ? ? R3
  • ?(?? ? volume
  • ?1/2 ? roughness
  • Diff. expressions for N, t, chi-square, F fields
  • Assumptions
  • Multivariate Normal
  • Stationary
  • Sample approximates continuous RF
  • Stationary
  • Results valid w/out stationary
  • More accurate when stat. holds

Mu threshold exceed by individual values at rate
alpha
69
Random Field TheorySmoothness Parameterization
  • E(?u) depends on ?1/2
  • Roughness matrix ?
  • Smoothness parameterized as Full Width at Half
    Maximum
  • FWHM of Gaussian kernel needed to smooth a
    whitenoise random field to roughness ?

70
FWE Multiple comparisons terminology
  • Family of hypotheses
  • Hk k ? ? 1,,K
  • H? ? Hk , I.e., all Hk true
  • H??true no Hk is false
  • Familywise Type I error
  • weak control omnibus test
  • Pr(reject H? ? H?? true) ? ?
  • If reject, can only say 1 or more Hk is
    falseanything, anywhere ?
  • strong control localising test
  • Pr(reject HW ? HW) ? ?
  • ? W W ? ? HW
  • Pr rejecting any true null H lt alpha
  • If reject, knowanything, where ?
  • Adjusted pvalues
  • test level at which reject Hk

71
Voxel-level test
p 0.05
  • Threshold u ? (critical t-value)
  • tk gt u? ? reject Hk
  • reject any Hk ? reject H?
  • reject H? if t?max gt u?
  • Valid test
  • weak control
  • Pr(T?max gt u? ? H?? ) ? ?
  • strong control
  • since W ? ?
  • Pr(TWmax gt u? ? HW? ) ? ?
  • Adjusted p values
  • Pr(T?max gt tk ? H?)

p 0.0001
p 0.0000001
u??
Write a Comment
User Comments (0)
About PowerShow.com