Current Version; CCM E39/C Future: ECHAM5/MECCA - PowerPoint PPT Presentation

1 / 27
About This Presentation
Title:

Current Version; CCM E39/C Future: ECHAM5/MECCA

Description:

(vorticity, divergence, temperature, specific. humidity, log-surface pressure, cloud water) ... gravity wave drag, transport of tracers, soil model, boundary ... – PowerPoint PPT presentation

Number of Views:24
Avg rating:3.0/5.0
Slides: 28
Provided by: martind9
Category:

less

Transcript and Presenter's Notes

Title: Current Version; CCM E39/C Future: ECHAM5/MECCA


1
Current Version CCM E39/C Future ECHAM5/MECCA
Lagrangian Transport ATTILA StenkeGrewe 2005
Hein et al., 2001
2
Transiente Model simulation - Boundary Conditions
QBO
Dameris et al., 2005
3
Transiente Model simulation - Boundary Conditions
Sea surface temperatures and ice
coverage Monthly means UK Met Office Hadley
Centre, hier Beispiel für Juni 1985 (Rayner et
al., 2003)
Natural und anthropogenic NOx emissions Source
Reference Emissions 1960 to 2000
Industry Benkovitz et al., 1996 12 - 33
TgN/a Lightning Grewe et al., 2001 5
TgN/a Air traffic Schmitt und Brunner, 97 0.1
- 0.7 TgN/a Surface Traffic Matthes, 2003
3.6 - 9.9 TgN/a Ships Corbett et al, 1999
1.2 - 3.2 TgN/a Biomass Burning Lee, pers.
comm 6.3 - 7.2 TgN/a
4
Evolution of ozone column DU 1960 - 2000
1960
1980
2000
1980
5
Grewe, 2004
6
De-seasonalized anomalies of the ozone columns
1980
1960
Global Trend 20 DU
1980
2000
7
Ozone influx from the stratosphere to the
troposphere
Estimate based on correlations with long-lived
species 475 Tg/year (Murphey and Fahey, 1994)
and with flux calculations NH 252 Tg/a SH 248
Tg/a (Olson et al., 2004)
Monthly means
x
De-seasonalized
8
Simulated ozone origin
Grewe, 2005
9
Ozone influx ozone origin
Northern Hemisphere Ozone mainly produced in
NHMS TRMS TRTS NHMS high inter-annual variability
Southern Hemisphere Ozone mainly produced in
TRTS SHMS TRLS SHMS low inter-annual
variability ? solar cycle visible
Grewe, 2005
10
The lightning NOx source
Kurz and Grewe, 2002
11
Variability and trends in the tropical UT ENSO
MLS ?H2O, UT, Tropics
E39/C ?H2O, 200 hPa,Tropics
150E
90W
(ppmv)
Longitude
  • Model reproduces individual strong events almost
    identical, e.g. 1995/96, 1997/98

12
Marked ozone tracers in a NMHC-model MOZART-2
1890
1990
anthropogenic
natural
stratosphere
Lamarque et al., 2005
13
Ozone changes in the tropical upper troposphere
(30S-30N 500-200 hPa)
  • Lightning
  • most important source for ozone
  • Large contrib. to variability

Stratospheric ozone second most important
source From 1990 Industry and surface
transportation
14
De-seasonalized ozone changes in the tropical UT
15
Evolution of ozone in NH lower troposphere
(30N-90N 500-1000 hPa)
Most important sources Industry, surface
transportation, lightning, stratosphere
16
Evolution of de-seasonalized ozone in NH lower
troposphere (30N-90N 500-1000 hPa)
25 30 -5
  • Year-to-year variability strongly dominated by
    stratosphere (5)
  • Trend in ozone (25 increase)
  • - results from increase in NOx emissions
    (Industry and traffic)
  • Trend reduction in 80s caused by lower emissions
    and
  • lower stratospheric contribution.

17
Conclusion (1)
  • Stratosphere
  • realistical variability of dynamics
  • realistical ozone trend (10 by H2O trend
    StenkeGrewe, 2005)
  • Interannual ozone-variability well reproduced
    (DWD-Ozonbulletin)
  • Validation mainly based on direct comparison with
    observation (TOMS, ...)
  • Stratosphere-Troposphere Exchange
  • ozone influx diagnosed, solar cycle influences
    variability
  • different ozone origins for STE on NH and SH
    results in different variability
  • Findings based on special diagnostics ozone
    origin
  • Troposphere
  • inter-annual variability in ozone attributed to
    sources
  • NH ozone trend IndustryTraffic (30), slower
    in 80s
  • Reduction in 80s,
    caused by Strat-O3
  • Findings based on special diagnostics ozone
    emission relation (tagged tracers)

18
Conclusion (2)
  • The identification of climate-chemistry
    interactions,
  • e.g. 'How does climate change chemistry?'
  • largely depends on additional diagnostics.
  • 2 Diagnostics presented
  • a) Ozone origin diagnostic
  • b) Ozone - emissions source relation
  • How well do we understand these processes
  • a) How much of the ozone in the troposphere is
    originally produced
  • e.g. in the tropics 30 km?
  • b) How much ozone is produced e.g. by
    lightning?
  • Model intercomparison would help to understand
    these processes.
  • Observational data maybe partly available.

19
(No Transcript)
20
Ozone Chemistry - Stratosphere
Destruction
Production
21
Ozone Chemistry - troposphere
Ozone Production O2 ? O O O2 O ? O3
O2
22
Transiente Model simulation - Aufwand and
Realization
Supercomputer Simulation raw data preparation
Preparation of the simulation 1 year 10
Persons Literatur recherche, Data preparation,
Development of diagnostics, Development of
run-scripts Realization 1/2 year on NEC
SX4 using 1-3 Processors Roughly 1
TByte Output
Workstation Visualization
Internet Control
23
Overview
  • Motivation
  • Modell / Experiment
  • Stratosphere
  • Circulation Validation
  • Chemistry Ozone What determines its
    variability?
  • Impact on the troposphere
  • Troposphere
  • NOx and Lightning
  • Ozone Trends
  • Summary

24
E39/C vs. NCEP Zonal Wind (60N) and Temperature
(80N) in 30 hPa
Wind
Temperatur
1960 - 1999
1960 - 1999
Model
1978 - 2002
1978 - 2002
Observation
High variability on Northern Hemisphere well
represented
25
E39/C vs. NCEP Zonal Wind (60S) and Temperatur
(80S) at 30 hPa
Wind
Temperature
1960 - 1999
1960 - 1999
Model
1978 - 2002
1978 - 2002
Observation
Low variability on Southern Hemisphere well
represented BUT Cold-Pole Problem
26
E39/C Zonal Wind (60N) and Temperature
(80N)Temporal development of polar vortex
Wind
Temperature
Between 60s and 70s-90s Strengthening of the
Jet streams and cooling But Within variability
27
E39/C Zonal Wind (60S) and Temperature
(80S)Temporal development of polar vortex
Wind
Temperature
Polar vortex exists longer
28
E39/C vs. MSU Channel 4 Global mean temperature
anomalies in the lower stratosphere (15-23 km)
29
Variability und trends in der LS Temperature
Linear trend
Solar cycle
Volcanoes
30
Variability of ozone column at 25S -
25NInfluence of the sun
31
E39/C vs. Observation Anomalies of ozone column
E39/C
TOMS
Ground stations
-gt Rudi Deckert
(Bojkov and Fioletov, 1995 pers. com. Fioletov,
2004)
32
Ozone climatologies E39/C and TOMS
E39/C 1960 - 1979
E39/C 1980 - 1999
TOMS 1985 - 1997
E39/C (60-79) minus (80-99)
33
Ozon-Mischungsverhältnis in ppbv - Mittelwert
1960-1969
inter-annual variability
34
Overview
  • Motivation
  • Modell / Experiment
  • Stratosphere
  • Circulation Validation
  • Chemistry Ozone What determines its
    variability
  • Impact on the troposphere
  • Troposphere
  • NOx and Lightning
  • Ozone Trends
  • Summary

35
Total Cloud Coverage ()
ECHAM
ISCCP
V. Grewe, M. Ponater, M. Dameris, R. Meerkötter
(DLR-IPA)
36
Total cloud cover from the transient run of
the ECHAM model in comparison to ISCCP, ECC, and
SYNOP data sets

d12 c0.2
ECHAM, 24h
ISCCP-D2, 1200 UT
d-16 c0.7
ECC, 1130-1630 UT
ECHAM, 24h
d0.0 c0.4
Monthly means, area averaged
Meerkötter et al., 2004
SYNOP, 1200 UT
ECHAM, 24h
R. Meerkötter, V. Grewe, M.Dameris, M. Ponater
(DLR-IPA), H. Mannstein (DLR-IPA), G. Gesell
(DLR-DFD), C.König (DLR-IPA)
37
Modelled Lightning (convective massflux) vs
Observations
OTD Satellite data
E39/C model
Kurz and Grewe, 2002
38
Simulated evolution of cloud to ground lightning
1960 to 2000
39
Variability and trends in the tropical UT ENSO
E39/C ?H2O, 200 hPa, 20N-20S, detrended -
ENSO-Index El Niño, La Niña
Stenke, 2005
40
Simulation and Observations of NOx
  • Upper troposphere
  • Air traffic corridor

Tropospheric column
Observations
Satellite Measurements
Aircraft Measurements - NOXAR
Grewe et al., 2002
Lauer et al., 2002,
Modell E39/C
41
Ozon-Differenzen (90-99) minus (60-69) in ppbv
42
Temperatur in K - Mittelwert 1960-1969
43
Temperatur-Differenzen (90-99) minus (60-69) in
K
44
Zonal Wind in m/s - Mittelwert 1960-1969
45
Zonal Wind-Differenzen (90-99) minus (60-69) in
m/s
46
Änderungen des Tropopausendrucks
47
Änderungen des Wasserdampf-Mischungsverhältnis an
der thermischen Tropopause
48
E39/C Wasserdampftrend in 80 hPa, 40N und 40S
49
E39/C Wasserdampftrend an der thermischen
Tropopause1980-2000 (!)



50
Variabilität durch vorgeschriebene Antriebe
  • Einfluss von Vulkanen

51
Variabilität durch vorgeschriebene Antriebe
  • Einfluss der quasi-zweijährigen Oszillation (QBO)

52
Anomalien der Ozongesamtsäule, bezogen auf 1964
bis 1980
53
Ozonbulletin des DWD, November 2004
54
Variabilität der Ozongesamtsäule in 30 - 60N,
JFM
12 DU 4 DU
55
Variabilität durch vorgeschriebene Antriebe
  • Einfluss der solaren Aktivität
  • (11-Jahres Zyklus)

56
Ozonproduktionsrate und -photolyserate in 10, 30
und 50 hPa
57
Zusammenfassung
  • Ergebnisse der früheren Zeitscheibenexperimente
    (1960, 1980, 1990) und die daraus abgeleiteten
    Schlüsse (z.B. Hein et al., 2001 Grewe et al.,
    2001 Schnadt et al., 2002) werden bestätigt.
    Berechnete klimatologische Mittel dynamischer und
    chemischer Größen sowie saisonale und
    interannuale Variationen stimmen mit
    Beobachtungen weitestgehend überein.
  • Langzeitliche Veränderungen (Trends) werden in
    der transienten Simulation zufriedenstellend
    reproduziert.
  • Das Modell zeigt überraschenderweise
    Ähnlichkeiten mit beobachteten, singulären
    Ereignissen, besonders in der Südhemisphäre.
  • Vorgeschriebene Meeresoberflächentemperaturen,
    die Berücksichtigung der solaren Variabilität und
    der QBO spielen für die Variabilität der
    (Modell-)Atmosphäre eine wichtige Rolle, große
    Vulkanausbrüche beeinflussen die Atmosphäre nur
    für wenige Jahre.

58
Ozonbulletin des DWD, November 2004
59
Ozone production and destruction 50N, 50 hPa
60
Ozone anomalies in 50N, 50 hPa, related to 1967
- 1979
Write a Comment
User Comments (0)
About PowerShow.com