Title: Hypercubic Networks
1Hypercubic Networks
- Charles E. Leiserson
- 6.895 Theory of Parallel Systems
- November 12, 2003
2Ideal Parallel Computer
3Ideal Distributed-Memory Parallel Computer
PM
PM
PM
PM
PM
PM
PM
PM
4Interconnection Networks
linear array
binary tree
2D mesh
5Hypercube
d 0 N 1
d 1 N 2
d 2 N 4
d 3 N 8
d 4 N 16
6Hypercube
110
111
010
011
100
101
000
001
7Cube-Connected Cycles
8Butterfly (FFT) Network
0
1
2
0
9Butterflies
10Decomposing a Butterfly
11Decomposing a Butterfly
12Decomposing a Butterfly
13Decomposing a Butterfly
14Decomposing a Butterfly II
15Decomposing a Butterfly II
16Decomposing a Butterfly II
17Decomposing a Butterfly II
18Decomposing a Butterfly II
19Decomposing a Butterfly II
20Decomposing a Butterfly II
21Routing on a Butterfly
0
1
2
0
000
000
001
001
010
010
011
011
100
100
101
101
110
110
111
111
22Tree in Butterfly
0
1
2
0
23Tree in Butterfly
0
1
2
0
24Beneš Network
25Decomposing a Beneš Network
n/2 Beneš
n/2 Beneš
26Routing on a Beneš Network
27Routing on a Beneš Network
28Routing on a Beneš Network
29Routing on a Beneš Network
30Routing on a Beneš Network
31Routing on a Beneš Network
32Routing on a Beneš Network
33Routing on a Beneš Network
34Routing on a Beneš Network
35Routing on a Beneš Network
36Shuffle-Exchange Network
110
111
010
011
100
101
000
001
37Shuffle-Exchange Network
38Perfect Shuffle
39Perfect Out-Shuffle
40Perfect In-Shuffle
41In-Shuffle Out-Shuffle Exchange
42SE ! DeBruijn
43SE ! DeBruijn
010
011
110
111
000
001
100
101
44SE ! DeBruijn
010
011
110
111
000
001
100
101
45SE ! DeBruijn
010
011
110
111
000
001
100
101
46DeBruijn Network
1
1
010
01
110
11
000
00
0
1
1
0
100
10
0
0
47DeBruijn Sequence
48Complex Plane Diagram of SE