Title: Measurement
1Measurement
2(No Transcript)
3(No Transcript)
4CHAPTER 1 MEASUREMENTObjectives
- 1. Be able to list some examples of measurement
and discuss their importance to man. - 2. List the five senses with which we examine
our environment and identify the one from which
most of our information comes. - 3. List the four fundamental properties of
nature which we seek to measure. - 4. Be able to list standard units for each of
the four fundamental properties. - 5. Distinguish between fundamental units and
derived units. - 6. Define and write the formula for density.
5Objectives
- 7. Be able to write conversion factors for
mass, length, and volume. - 8. Define the following terms degree,
circumference, diameter, pi, radius - 9. Distinguish between the terms accuracy and
- precision.
- 10. Be able to express numbers in powers of ten.
- 11. Be able to define, write the equation for,
and calculate percentage error. - 12 Be able to change numbers from standard
notation to powers of ten notation. - 13. Write the values of prefixes and
abbreviations.
6LIST FIVE SENSES
- SIGHT
- HEARING
- TOUCH
- SMELL
- TASTE
7Figure 1.1aSome Optical Illusions
8Figure 1.1bSome Optical Illusions (continued)
9Figure 1.1cSome Optical Illusions (continued)
10Figure 1.1dSome Optical Illusions (continued)
11Concepts
- A meaningful idea used to describe phenomena that
happen in our environment. - It can be stated in words, symbols or formulas.
12Galileo
- S c i e n t i f i c M e t h o d
13S c i e n t i f i c Method
Hypothesis
- A Tentative explanation of an observed event.
14Scientific MethodExperimentation
- Experiment is designed to test hypothesis.
- Independent variable vs. dependent variable
- Results must be reproducible
- Conclusion must accept or reject hypothesis
15S c i e n t i f i c Theory
- A tested explanation of a hypothesis which
stands up to testing over a period of time.
16M e a s u r e m e n t S y s t e m
s
- in order to collect data we need to measure
accurately. We need a measurement system.
17List Examples Of Measurement
- Making accurate and precise measurements helps us
to improve our understanding of the world and
enables us to predict how future events will turn
out under similar circumstances.
18(No Transcript)
19FUNDAMENTAL PROPERTIES OF NATURE
- LENGTH-measurement of space in any direction
- MASS-amount of matter an object contains
- TIME-continuous forward flowing of events
- ELECTRIC CHARGE
20Mass is a Fundamental Quantity and Remains
Constant Weight Varies
Section 1.4
21MEASUREMENT TOOLS
22FUNDAMENTAL UNITS VSDERIVED UNITS
- AREA L X W
- VOLUME L x W x H
- SPEED D / T
- DENSITY M / V
23FORMULA FOR DENSITY
- DENSITY MASS
- VOLUME
- DENSITY OF WATER 1
24(No Transcript)
25Standard units
- A fixed and reproducible value for the purpose of
taking measurements. - Measurement is a comparison of physical quantity
with a standard unit
26A Second of Time
Originally defined as a fraction of the average
solar day.
Section 1.4
27A Second of Time
Defined by the radiation frequency of the Cs133
atom
Section 1.4
28Figure 1.4aThe Meter
29Figure 1.4bThe Meter (continued)
30Figure 1.4cThe Meter (continued)
31Kilogram Standard
U.S. Prototype 20 Kilogram, at NIST in
Washington, D.C. Actually 0.999 999 961 kg of
the standard in Paris
Section 1.4
32Figure 1.9The Kilogram
33STANDARD UNITS
34 S I T h e I n t e r n a t i o n a l
S y s t e m
- U n i t o f l e n g t h . . . M e t e r
- U n i t o f m a s s . . . K i l o g r a m
- U n i t o f v o l u m e . . . L i t e r
- U n i t o f t e m p . . . 0 C e l s i u s
- U n i t o f t i m e . . . S e c o n d
35Standard Units
- British system foot pound sec
- fps
- Metric system meter kilogram
- mks
- centimeter gram second
- cgs
36Figure 1.10bLiter and Quart
37PREFIXES
38COMMON SI UNITS
39Metric Unit Chart
- Kilo-hecto-deka-basic-deci-centi-milli
- 1 10 100 1000
- .005 .05 .5
5
40CONVERSION FACTORS
- LENGTH 1 in 2.54 cm
- MASS 2.2 lbs 1 kg
- VOLUME 1.O6 qts 1 liter
- 1 in 2.54 cm
- 2.54 cm 1 in
41Give them 2.54 cm and theyll take 1.61 km.
4230 grams of prevention is worth 0.454 kg of cure!
43F a c t o r - L a b e l
M e t h o d
44F a c t o r - L a b e l
- T h e m o s t i m p o r t a n t
m a t h e m a t i c a l p r o
c e s s i n c h e m i s
t r y . - T r e a t s n u m b e r s a n d
u n i t s e q u a l l y . - M u l t i p l y w h a t i s g i v e n b y
f r a c t i o n s e q u a l t o o n e
t o c o n v e r t u n i t s .
45F a c t o r - L a b e l
A f r a c t i o n e q u a l t o o n e
W h a t i s g i v e n
46F a c t o r - L a b e l
C o n v e r t 1 0 0 0 g r a m s t o p o u
n d s
47F a c t o r - L a b e l
C o n v e r t 1 0 0 0 g r a m s t o p o u
n d s
1 p o u n d
1 0 0 0 g
2 . 2 p o u n d s
4 5 4 g
48F a c t o r - L a b e l
C o n v e r t 6 5 m i l e s / h o u r t
o m e t e r s / s e c o n d
49F a c t o r - L a b e l
C o n v e r t 6 5 m i l e s / h o u r t
o m e t e r s / s e c o n d
h o u r s e c o n d
6 5 m i l e s h o u r
m e t e r s m i l e s
50Experimental Error
- Uncertainty-measurement is a comparison of the
unknown quantity with the standard unit - systematic error-always in the same direction
improperly calibrated watch thats too slow
speedometer or bad vision
51Error
- Random error- unknown and unpredictable in either
direction - temperature
- pressure
- normal variations
52ACCURACY VS PRECISION
- ACCURACY - HOW CLOSE A MEASUREMENT COMES TO THE
TRUE VALUE (ACCEPTED VALUE) - PRECISION- AGREEMENT AMONG REPEATED MEASUREMENTS
(SPREAD) REPRODUCIBILITY
53PERCENTAGE ERROR
- ACC VALUE - EXP VALUE X 100
- ACC VALUE
54- When we use hand calculators we may end up with
results like 6.8/1.67 4.0718563 - Are all these numbers significant?
Section 1.7
55Significant Figures
- General Rule Report only as many significant
figures in the result as there are in the
quantity with the least. - 6.8 cm/1.67 cm 4.1(round off 4.0718563)
- 6.8 is the limiting term with two SF
- 5.687 11.11 16.80 (round up 16.797)
- 11.11 is the limiting term with four SF
Section 1.7
56Significant Digits
- Digits other than zero are always significant.
- 96 2 significant digits
- 61.4 3 significant digits
- 0.52 2 significant digits
57Significant digits
- One or more final zeros used after the decimal
point are always significant. - 4.72 3 significant digits
- 4.7200 5 significant digits
- 82.0 3 significant digits
58Significant digits
- Zeros between two other significant digits are
always significant. - 5.029 4 significant digits
- 306 3 significant digits
59Significant digits
- Zeros used for spacing the decimal point are not
significant. The zeros are placeholders only. - 7000 1 significant digit
- 0.00783 3 significant digits
60POWERS OF TEN
- TABLE 1.3 PAGE 21
- 100 1
- 101 10
- 102 100
- 103 1000
- 104 10000
61POWERS OF TEN NOTATION
- 186 000 1.86 x 105
- .025 2.5 x 10-2
62Examples of Numbers Expressed in Powers-of-10
Notation
Section 1.7
63Scientific Notation
- .0001
- 1 x 10-4
- .00000197
- 1 x 10-6
- 98750
- 1 x 104
64Rules for Scientific Notation
- The exponent, or power-of-10, is increased by one
for every place the decimal point is shifted to
the left. - 360,000 3.6 x 105
- The exponent, or power-of-10, is decreased by one
for every place the decimal point is shifted to
the right. - 0.0694 6.94 x 10-2
Section 1.7
65Scientific Notation
- 2.5 x 10-7
- .00000025
- 9.3 x 106
- 9 300 000
66Chapter 1Practice problems
67What is the volume of a liter in m3 and mm3
- 1 Liter ____ m3
- 1 liter1000ml1000cm3
- 1m100cm
- 1m3106cm3
- 1000cm3 x 1m3 .001m3
- 1L 106cm3
68- 1m1000mm
- 1m3109mm3
- .001m3 x 109mm3 106mm3
- 1 1m3
-
69 2. Show that one cubic meter contains 1000 L
- 1cm31ml
- 1000cm31000ml
- 1m100cm
- 1m3106cm3
- 1m3 x 106cm3 x 1ml x 1L
- 1 1m3 1cm3 1000ml
704. What is the mass of this volume of water in
kilograms and in grams?
- 20cm x 20cm 30cm 12 000cm3
- 12 000cm312 000ml
- 12 000ml12 000g
- 12 000g12kg
715. What would the volume of water be?
- 1ml1cm31g
- .085kg85g
- 1000
- 85g85ml
729. Justify you answer40 MPH60km/h
- 40mph x 1.609km/h 64 mph
- 1 1mph
7311. It took 300 L of gasoline to fill up the
cars tank.
- 300L x 1g 79 gal
- 1 3.79L
- Will your tank hold 79 gallons of gas!
7414. Which is faster 90km/h or 60mph
- 60 mph x 1.609km/h 96.54km/h
- 1 1mph
7515. What is the density in g/cm3
- D m/v
- D.500kg500g
- D500g 7.9g/cm3
- 63cm3
7618. rounding
- A. 1.1 x 102
- B. 2.1 x 10-3
- C. 9.4 x 103
- D. 3.4 x 10-4
7719. Round
- (3.2m x 1.04m) /0.015 m2.2 x 102 m
- 220 m
7820. Round 6.7544242
- 2.15 x 3.146.7544242
- Round to 3 significant digits
- 6.75
7921
- A. 7.3 x 104 73 000
- B. 3.25 x 10-4.000325
- C. 0.399 x 103399
- D. 0.234 x 10-20.00234
8024.
- A. 40 megabytes40x 106 bytes
- B. 150ml 150 x 10-3 L
- C. 250mg 250 x 103g
- D. 500kilobucks500 x 103 bucks
8127. pizza
- 154 in
- Apie r2
- A3.14 x 3.5238.5 in2
- A3.14 x 72154 in2
- 154/38.54 times larger