Combinational Synthesis - PowerPoint PPT Presentation

1 / 24
About This Presentation
Title:

Combinational Synthesis

Description:

The house is secure if the WINDOW, DOOR, and GARAGE inputs are all 1. SECURE = WINDOW DOOR GARAGE. 311_06. 3. Alarm Circuit Realization ... – PowerPoint PPT presentation

Number of Views:52
Avg rating:3.0/5.0
Slides: 25
Provided by: drron6
Category:

less

Transcript and Presenter's Notes

Title: Combinational Synthesis


1
Combinational Synthesis
  • ELEC 311
  • Digital Logic and Circuits
  • Dr. Ron Hayne
  • Images Courtesy of John Wakerly and Prentice-Hall

2
Alarm Word Problem
  • The ALARM output is 1 if the PANIC input is 1, or
    if the ENABLE input is 1, the EXITING input is 0,
    and the house is not secure.
  • ALARM PANIC (ENABLE EXITING' SECURE')
  • The house is secure if the WINDOW, DOOR, and
    GARAGE inputs are all 1.
  • SECURE WINDOW DOOR GARAGE

3
Alarm Circuit Realization
  • ALARM PANIC (ENABLE EXITING' (WINDOW
    DOOR GARAGE)')

4
Sum-of-Products Realization
  • ALARM PANIC (ENABLE EXITING' WINDOW')
    (ENABLE EXITING' DOOR') (ENABLE
    EXITING' GARAGE')

5
DeMorgans Theorems
  • T13
  • T13'

6
NAND-NAND Realizations
  • Sum-of-Products
  • Two-level AND-OR
  • Equivalent NAND-NAND

7
NAND-NAND Realizations
8
NOR-NOR Realizations
  • Product-of-Sums
  • Two-level OR-AND
  • Equivalent NOR-NOR

9
Combinational Minimization
  • Reduce cost of two-level circuits
  • Minimize number of first-level gates
  • Minimize number of inputs on first-level gates
  • Minimize number of inputs on second-level gates
  • Based on Adjacency Theorem (Combining)
  • T10 (X Y) (X Y') X
  • T10' (X Y) (X Y') X

10
Karnaugh Map
F SX,Y,Z(3,7) F (X' Y Z) (X Y Z) F
Y Z
11
4-variable K-map
12
Terminology
  • Minterm
  • Implicant
  • Cover
  • Prime Implicant
  • Distinguished 1-cell
  • Essential Prime Implicant
  • Secondary Prime Implicant
  • Minimal Sum

13
Methodology
  • Minimal Sum
  • Essential Prime Implicants
  • Secondary Prime Implicants
  • Minimal Cover

14
Example
F (Y Z) (X Y) (W X' Z)
(W X Z')
F SW,X,Y,Z(3,6,7,9,11,12,14,15)
15
Another Example
F (W' Y Z') (W X' Y') (X
Y' Z) (W X Y)
F SW,X,Y,Z(2,5,6,8,9,13,14,15)
16
Design Example
17
7-Segment Display Numbers
18
BCD to 7-Seg. Truth Table
19
BCD to 7-Seg. Truth Table
20
Minterm Form of Outputs
A Sx1,x2,x3,x4(0,2,3,5,6,7,8,9) d(10-15) B
Sx1,x2,x3,x4(0,1,2,3,4,7,8,9) d(10-15) C
Sx1,z2,x3,x4(0,1,3-9) d(10-15) D
Sx1,x2,x3,x4(0,2,3,5,6,8,9) d(10-15) E
Sx1,x2,x3,x4(0,2,6,8) d(10-15) F
Sx1,x2,x3,x4(0,4,5,6,8,9) d(10-15) G
Sx1,x2,x3,x4(2,3,4,5,6,8,9) d(10-15)

21
Output A
A x3 x1 (x2 x4) (x2' x4')
A Sx1,x2,x3,x4(0,2,3,5,6,7,8,9) d(10-15)
22
Output B
B x2' (x3' x4') (x3 x4)
B Sx1,x2,x3,x4(0,1,2,3,4,7,8,9) d(10-15)
23
Minimized Logic Equations
  • A x1 x3 (x2 x4) (x2' x4')
  • B x2' (x3 x4) (x3' x4')
  • C x2 x3' x4
  • D x1 (x2' x3) (x3 x4') (x2' x4')
    (x2 x3' x4)
  • E (x2' x4') (x3 x4')
  • F x1 (x2 x3') (x3' x4') (x2 x4')
  • G x1 (x2 x3') (x2' x3) (x3 x4')

24
Summary
  • Word Problem
  • Boolean Equation
  • Circuit Realization
  • Two-Level Circuit Realizations
  • SOP (AND-OR) NAND-NAND
  • POS (OR-AND) NOR-NOR
  • Combinational Minimization
  • Karnaugh Maps
  • Dont Cares
Write a Comment
User Comments (0)
About PowerShow.com