Title: Combinational Synthesis
1Combinational Synthesis
- ELEC 311
- Digital Logic and Circuits
- Dr. Ron Hayne
- Images Courtesy of John Wakerly and Prentice-Hall
2Alarm Word Problem
- The ALARM output is 1 if the PANIC input is 1, or
if the ENABLE input is 1, the EXITING input is 0,
and the house is not secure. - ALARM PANIC (ENABLE EXITING' SECURE')
- The house is secure if the WINDOW, DOOR, and
GARAGE inputs are all 1. - SECURE WINDOW DOOR GARAGE
3Alarm Circuit Realization
- ALARM PANIC (ENABLE EXITING' (WINDOW
DOOR GARAGE)')
4Sum-of-Products Realization
- ALARM PANIC (ENABLE EXITING' WINDOW')
(ENABLE EXITING' DOOR') (ENABLE
EXITING' GARAGE')
5DeMorgans Theorems
6NAND-NAND Realizations
- Sum-of-Products
- Two-level AND-OR
- Equivalent NAND-NAND
7NAND-NAND Realizations
8NOR-NOR Realizations
- Product-of-Sums
- Two-level OR-AND
- Equivalent NOR-NOR
9Combinational Minimization
- Reduce cost of two-level circuits
- Minimize number of first-level gates
- Minimize number of inputs on first-level gates
- Minimize number of inputs on second-level gates
- Based on Adjacency Theorem (Combining)
- T10 (X Y) (X Y') X
- T10' (X Y) (X Y') X
10Karnaugh Map
F SX,Y,Z(3,7) F (X' Y Z) (X Y Z) F
Y Z
114-variable K-map
12Terminology
- Minterm
- Implicant
- Cover
- Prime Implicant
- Distinguished 1-cell
- Essential Prime Implicant
- Secondary Prime Implicant
- Minimal Sum
13Methodology
- Minimal Sum
- Essential Prime Implicants
- Secondary Prime Implicants
- Minimal Cover
14Example
F (Y Z) (X Y) (W X' Z)
(W X Z')
F SW,X,Y,Z(3,6,7,9,11,12,14,15)
15Another Example
F (W' Y Z') (W X' Y') (X
Y' Z) (W X Y)
F SW,X,Y,Z(2,5,6,8,9,13,14,15)
16Design Example
177-Segment Display Numbers
18BCD to 7-Seg. Truth Table
19BCD to 7-Seg. Truth Table
20Minterm Form of Outputs
A Sx1,x2,x3,x4(0,2,3,5,6,7,8,9) d(10-15) B
Sx1,x2,x3,x4(0,1,2,3,4,7,8,9) d(10-15) C
Sx1,z2,x3,x4(0,1,3-9) d(10-15) D
Sx1,x2,x3,x4(0,2,3,5,6,8,9) d(10-15) E
Sx1,x2,x3,x4(0,2,6,8) d(10-15) F
Sx1,x2,x3,x4(0,4,5,6,8,9) d(10-15) G
Sx1,x2,x3,x4(2,3,4,5,6,8,9) d(10-15)
21Output A
A x3 x1 (x2 x4) (x2' x4')
A Sx1,x2,x3,x4(0,2,3,5,6,7,8,9) d(10-15)
22Output B
B x2' (x3' x4') (x3 x4)
B Sx1,x2,x3,x4(0,1,2,3,4,7,8,9) d(10-15)
23Minimized Logic Equations
- A x1 x3 (x2 x4) (x2' x4')
- B x2' (x3 x4) (x3' x4')
- C x2 x3' x4
- D x1 (x2' x3) (x3 x4') (x2' x4')
(x2 x3' x4) - E (x2' x4') (x3 x4')
- F x1 (x2 x3') (x3' x4') (x2 x4')
- G x1 (x2 x3') (x2' x3) (x3 x4')
24Summary
- Word Problem
- Boolean Equation
- Circuit Realization
- Two-Level Circuit Realizations
- SOP (AND-OR) NAND-NAND
- POS (OR-AND) NOR-NOR
- Combinational Minimization
- Karnaugh Maps
- Dont Cares