Let G be a group. Define j: G - PowerPoint PPT Presentation

About This Presentation
Title:

Let G be a group. Define j: G

Description:

Let G be a group. Define j: G G by j(x) = x. The First ... (c) Show I and V are isomorphic. (d) Show ker j = I (e) Show Q8/ I and V are both abelian. ... – PowerPoint PPT presentation

Number of Views:22
Avg rating:3.0/5.0
Slides: 13
Provided by: pattifra
Learn more at: http://myslu.stlawu.edu
Category:

less

Transcript and Presenter's Notes

Title: Let G be a group. Define j: G


1
  • Let G be a group. Define j G G by j(x) x.
  • The First Isomorphism Theorem says
  • j(ab) j(a)j(b) (b) j is onto.
  • (c) G ? G (d) G ? e
  • (e) G/e ? G (f) G/G ? e

2
  • Let G be a group. Define j G e by j(x) e.
  • The First Isomorphism Theorem says
  • j(ab) j(a)j(b) (b) j is onto.
  • (c) G ? G (d) G ? e
  • (e) G/e ? G (f) G/G ? e

3
  • To use the First Isomorphism Theorem to show that
    Q8/ltIgt ? V, we first
  • (a) Define j Q8 ltIgt
  • Define j Q8 Q8/ltIgt
  • Define j Q8/ltIgt V
  • (d) Define j Q8 V
  • (e) Show Q8/ltIgt and V are both abelian.
  • (f) Show Q8/ltIgt and V are both cyclic.

4
  • To use the First Isomorphism Theorem to show that
    Q8/ltIgt ? V, we first define j Q8 V. We then
  • (a) Show j is a homomorphism.
  • Show j is an isomorphism.
  • (c) Show Q8/ltIgt and V are both abelian.
  • (d) Show Q8/ltIgt and V are both cyclic.

5
  • To use the First Isomorphism Theorem to show that
    Q8/ltIgt ? V, we first define j Q8 V. We then
  • Show j is onto.
  • (b) Show j is one-to-one
  • (c) Show j is an isomorphism.
  • (c) Show Q8/ltIgt and V are both abelian.
  • (d) Show Q8/ltIgt and V are both cyclic.

6
  • To use the First Isomorphism Theorem to show that
    Q8/ltIgt ? V, we first define j Q8 V. We then
  • (a) Show j is one-to-one
  • Show j is an isomorphism.
  • (c) Show ltIgt and V are isomorphic.
  • (d) Show ker j ltIgt
  • (e) Show Q8/ltIgt and V are both abelian.
  • (f) Show Q8/ltIgt and V are both cyclic.

7
  • To start the proof, we
  • (a) Define j G G/K
  • Define j G/H K/H
  • Define j G/H G/K
  • (d) Define j G/K G
  • (e) Show j is a homomorphism.

8
  • The thing that goes j(here) is
  • (a) g (b) x
  • Kg (d) Hg
  • (g, k) (f) (h, k)
  • (g) hg (h) kg

9
  • The thing that goes j(Hg) here is
  • (a) g (b) x
  • Kg (d) Hg
  • (g, k) (f) (h, k)
  • (g) hg (h) kg

10
  • We then
  • (a) Show j is a homomorphism.
  • Show j is an isomorphism.
  • (c) Show G/H and G/K are both abelian.
  • (d) Show G/H and G/K are both cyclic.

11
  • We then
  • Show j is one-to-one.
  • (b) Show j is onto.
  • (c) Show j is an isomorphism.
  • (c) Show Q8/ltIgt and V are both abelian.
  • (d) Show Q8/ltIgt and V are both cyclic.

12
  • We then
  • (a) Show j is one-to-one
  • Show j is an isomorphism.
  • (c) Show ker j G/K.
  • (d) Show ker j G/H
  • Show ker j K/H
  • (f) Show Q8/ltIgt and V are both cyclic.
Write a Comment
User Comments (0)
About PowerShow.com