Dileptons and Medium Effects in Heavy-Ion Collisions - PowerPoint PPT Presentation

1 / 31
About This Presentation
Title:

Dileptons and Medium Effects in Heavy-Ion Collisions

Description:

Dileptons and Medium Effects. in Heavy-Ion Collisions. Ralf Rapp. Cyclotron Institute Physics Department. Texas A&M University. College Station, USA ... – PowerPoint PPT presentation

Number of Views:31
Avg rating:3.0/5.0
Slides: 32
Provided by: Rapp58
Category:

less

Transcript and Presenter's Notes

Title: Dileptons and Medium Effects in Heavy-Ion Collisions


1
Dileptons and Medium Effects in Heavy-Ion
Collisions
Ralf Rapp Cyclotron Institute Physics
Department Texas AM University College
Station, USA Perspectives in Hadronic Physics
Conference 2006 ICTP Trieste, 24.05.06
2
Introduction EM-Probes -- Basic Questions
QCD Phase Diagram
  • Thermalization ? study the phase diagram
  • (highest) temperature of the matter
  • chiral symmetry restoration (mass generation!)
  • in-medium spectral properties below above Tc

Inevitable consequences of QGP, link to lattice
QCD
3
Outline
2.) Electromagnetic Emission and Chiral
Symmetry ? EM Thermal Rates ?
Axial-/Vector Correlators and Chiral Sum
Rules 3.) Medium Effects and Thermal Dileptons
? Vector Mesons in Medium Hadronic Many-Body
Theory ? Experimental and Theoretical
Constraints ? Dilepton Rates Hadronic vs.
QGP 4.) Dileptons at SPS ? CERES and NA60
Data ? Interpretation Open Issues 5.)
Conclusions
4
2.) EM Emission Rates and Chiral Symmetry
E.M. Correlation Function
Im ?em(M,qmB,T)
Im ?em(q0q mB,T)
5
2.2 Chiral Symmetry Breaking and Restoration
Splitting of chiral partners r - a1(1260) ?
Chiral Symmetry Breaking
Axial-/Vector in Vacuum
pQCD cont.
6
2.3 Chiral Sum Rules and the a1(1260)
  • Energy-weighted moments of difference vector
    axialvector

Das etal 67
Weinberg 67
7
3.1 Medium Effects I Hadronic Many-Body Theory
Chanfray etal, Herrmann etal, RR etal, Weise
etal, Post etal, Eletsky etal, Oset etal,
Dr (M,qmB ,T) M 2- mr2 Srpp SrB -SrM -1
r-Propagator
r
B,a1,K1...
r
Sp
SrB,M
Srpp
r-Selfenergies
N,p,K
Sp
8
3.1.2 r(770) Spectral Function in Nuclear Matter
In-med p-cloud r -N ? B resonances
Relativist. r -N ? B (low-density approx)
In-med p-cloud r -N ? N(1520)
Urban etal 98
Post etal 02
Cabrera etal 02
rN0.5r0
rNr0
rNr0
Constraints g N , g A
p N ?r N PWA
  • good agreement strong broadening small
    mass-shift up
  • constraints from (vacuum) data important
    quantitatively

9
3.1.3 QCD Sum Rules r(770) in Nuclear Matter
dispersion relation for correlator
Shifman,Vainshtein Zakharov 79
  • lhs OPE (spacelike Q2)
  • rhs hadronic model (sgt0)

10
3.1.4 r-Meson Spectral Functions at SPS
HotDense Matter
Hot Meson Gas
RRWambach 99
RRGale 99
  • r-meson melts in hot and dense matter
  • baryon density rB more important than
    temperature
  • reasonable agreement between models

11
3.2 Dilepton Emission Rate Hadron Gas vs. QGP
Braaten,PisarskiYuan 90
  • Hard-Thermal-Loop QGP rate
  • enhanced over Born rate
  • matching of HG and QGP
  • in vicinity of Tc
  • Quark-Hadron Duality ?!

12
4.) Dilepton Spectra in Heavy-Ion Collisions
Thermal Emission
Pb-Pb Collisions Trajectories in the Phase
Diagram
mN GeV t fm/c
  • based on entropy (baryon-number) conservation
  • volume expansion VFB(t ) (z0vzt ) p (R-
    0.5a-t 2)2

13
4.1 Pb-Au Collisions at SPS CERES/NA45
  • QGP contribution small
  • medium effects on r-meson!
  • dropping mass or broadening?!

14
4.2 In-In at SPS Dimuons from NA60
Damjanovic et al. PRL 06
  • excellent mass resolution and statistics
  • for the first time, dilepton excess spectra
    could be extracted!

15
4.2.2 In-In at SPS Theory vs. NA60
  • predictions based r-spectral function of
    RRWambach 99
  • uncertainty in fireball lifetime (25 norm.)
    or infer tFB7fm/c !
  • relative strength of thermal sources fix
  • good agreement with r melting, including pt
    dependence

van Hees RR 06
16
4.2.3 Intermediate-Mass Region
  • 4p states dominate in the vacuum
  • e.m. correlator above M 1.1GeV
  • lower estimate
  • use vacuum 4p correlator
  • upper estimate
  • O(T2) medium effect ?
  • chiral V-A mixing
  • with

4p
2p
EletskyIoffe 90
17
4.2.4 NA60 Data Other r-Spectral Functions
  • switch off medium modifications
  • T-, rB- dependence of bare parameters dropping
    mass

BrownRho 91, HatsudaLee 92
  • free spectral function ruled out
  • meson gas insufficient either

18
4.2.5 (Some) Open Issues
  • Heavy-Ion Collisions NA60
  • - centrality dependence, free rs (surface vs.
    volume)
  • - sensitivity to fireball evolution
  • - quantitative w and f
  • - thermal radiation at intermediate mass
    (M1.5-3 GeV)
  • - chiral restoration ? duality (hadron
    liquid ? sQGP)
  • ? chiral sum
    rules
  • ? chiral
    mixing in the M1-1.5GeV region
  • Cold Nuclei CB/TAPS, KEK-E325
  • - dropping w-mass broadening
  • - dropping r-mass without broadening ?!

19
5.) Conclusions
  • Strong medium effects in ll - spectra
  • new level of precision in NA60 ? model
    discrimination
  • r-melting at Tc, no apparent mass shift
  • alternative models? (quality control)
  • Chiral Restoration
  • - direct (exp.) measure axialvector
  • - indirect (theo.) (1) effective model
    (constraints)
  • (2) chiral sum
    rules (V-A moments) vs. lQCD
  • (3)
    compatibility with dilepton/photon data
  • HADES, RHIC, LHC, SPS-09, CBM, , elementary
    reactions

In-medium V-meson spectroscopy has begun
20
3.3 Medium Effects II Dropping Mass
BrownRho 91, 02
Scale Invariance of LQCD ? bare parameters
change!?
  • density dependence
  • QCD sum rules C 0.15
  • temperature dependence a
  • quark condensate from chiral
  • perturbation theory
  • vector dominance coupling
  • (gauge invariance!)

Hatsuda Lee 92
Pelaez 03
21
3.) Medium Effects and Thermal Dileptons
3.1 Lattice QCD (QGP)
Dilepton Rate ImP(w,q0)/w2
EM Correlator ImP(w,q)/w2
T1.5Tc
Bielefeld Group 02, 05
  • lQCD ltlt pQCD at low mass (finite volume?)
  • currently no thermal photons from lQCD
  • vanishing electric conductivity!? but Gavai
    04

22
3.4 In-Medium IV Vector Manifestation of Chiral
Symmetry
  • Hidden Local Symmetry r-meson introduced as
    gauge boson,

  • Higgs mechanism generates r-mass
  • Vacuum rL?p, good phenomenology (loop exp.
    O(p/Lc , mr /Lc , g))
  • In-Medium T-dep. mr(0), gr matched to OPE
    (spacelike), LmatchltLc ,
  • Renormalization Group
    running ? on-shell
  • ? - dropping r-mass ? 0 (RG fixed point at
    Tc) ,
  • - violation of vector dominance a
    2 ? 1

Harada, Yamawaki etal, 01
23
4.2 Recent Advances at SPS Power of Precision
NA60 Data vs. Model Predictions
RRWambach 99 RR03
  • r-meson melting supported (baryons!)
  • dropping mass (as used to explain CERES data)
    ruled out
  • open issues
  • (1) M gt 0.9GeV (4p?mm- !?)
  • (2) normalization 0.6 (pt lt0.5GeV), 0.8 (all
    pt ), 2 (pt gt1GeV)
  • (3) other models (vector manifestation, chiral
    virial approach, )

24
4.2.2 Modified Fireball and Absolute Normalization
  • r-spectral function unchanged since RRWambach
    99
  • expanding fireball, fixed S (?Nch)
    VFB(t)(z0vzt ) p (R-0 0.5a-t 2)2
  • Increase a- ? reduced lifetime (t 9?6fm/c),
    increased v-0.4?0.5c

25
Revival Attempts for Dropping r-Mass
E.g., SkokovToneev 05
Fireball Evolution
egt1GeVfm-3 ec for Dt8 fm/c?!
Bjorken regime tFB0.5 fm/c?!
  • Not compatible with gauge
  • invariance (no mr in VDM)
  • acceptance?

26
M 1GeV in NA60
H. van Hess RR, in prep.
  • combination of 4-p QGP charm?!
  • (beware schematic acceptance)

27
4.2.5 Chiral Virial Approach vs. NA60 (central)
Steele,Yamagishi Zahed 99
implementation van HeesRR 05
28
5.) Electromagnetic Probes
5.1.1 Thermal Photons I SPS
Expanding Fireball pQCD
  • pQCDCronin at qt gt1.6GeV
  • ? T0205MeV suff., HG dom.

Turbide,RRGale04
29
5.1.2 Thermal Photons II RHIC
  • thermal radiation qtlt3GeV ?!
  • QGP window 1.5ltqtlt3GeV ?!
  • also g -radiation off jets
  • shrinks QGP window qtlt2GeV ?!

Gale,Fries,Turbide,Srivastava 04
30
5.3.1 RHIC Vector Mesons in Medium
Hadronic Many-Body Theory
  • baryon effects important even at rB,net0
  • sensitive to rB,totrBrB , most pronounced at
    low M
  • f more robust ? OZI

-
31
5.3.2 Dileptons II RHIC
RR 01
QGP
  • low mass thermal! (mostly in-medium r)
  • connection to Chiral Restoration a1 (1260)? pg
    , 3p
  • int. mass QGP (resonances?) vs. cc ? ee-X
    (softening?)

-
Write a Comment
User Comments (0)
About PowerShow.com