THE FAMILY OF BLOCK CIPHERS - PowerPoint PPT Presentation

About This Presentation
Title:

THE FAMILY OF BLOCK CIPHERS

Description:

The algorithms EAK and DAK for fixed K can be considered as transformations of the set An. EAK(DAK(m0m1...mn-1))=m0m1...mn-1. DAK(EAK(m0m1...mn-1))=m0m1...mn-1. ... – PowerPoint PPT presentation

Number of Views:50
Avg rating:3.0/5.0
Slides: 28
Provided by: aleksand8
Category:
Tags: block | ciphers | family | the | dak

less

Transcript and Presenter's Notes

Title: THE FAMILY OF BLOCK CIPHERS


1
THE FAMILY OF BLOCK CIPHERS SD-(n,k)
S. Markovski D. Gligoroski V. Dimitrova A. Mileva
2
Outline
  • Introduction
  • Block ciphers
  • Quasigroups
  • Encryption/Decryption Algorithms
  • Conclusion
  • Future work

3
Introduction
  • We present a new family of block ciphers
    SD-(n,k).
  • SD-(n,k) is based on the properties of
    quasigroup operations and quasigroup string
    transformations.
  • This design allows choosing different level of
    security and different kind of performances.

4
Block ciphers
  • Block cipher is a symmetric key cipher which
    operates on fixed-length groups of bits, termed
    blocks, with an unvarying transformation.

Plaintext
Ciphertext
E
Key
D
Key
Ciphertext
Plaintext
5
Block ciphers
  • To encrypt messages longer than block size a
    mode of operation is used
  • Basic mode of operation
  • ECB, CBC, OFB, CFB
  • Typical key size in bits are
  • 40, 56, 64, 80, 128, 192, 256,...
  • From 2001 standard is AES witch use
  • 128 bits for SECRET
  • 192 bits, 256 bits for TOP SECRET

6
ECB Electronic Code Book
M0
...
Mn
M1
E
...
E
E
C0
...
Cn
C1
7
CBC Cipher Block Chaining
M0
...
Mn
M1
IV
?
?
?
E
...
E
E
C0
...
Cn
C1
8
OFB Output FeedBack
M0
...
Mn
M1
IV
E
...
E
E
?
?
?
C0
...
Cn
C1
9
CFB Cipher FeedBack
M0
Mn
M1
...
?
?
?
E
...
E
E
IV
C0
Cn
C1
...
10
Quasigroup
  • Quasigroup (Q,) is a groupoid satisfying the
    law
  • (?u,v?Q)(?!x,y?Q)
  • (xuv uyv).

0 1 2 3
0 2 1 3 0
1 0 3 1 2
2 1 0 2 3
3 3 2 0 1
  • Q is a finite set.
  • is quasigroup oparation.

11
Latin square
  • Releated combinatorial structure is Latin square.
  • Latin square is an nxn matrix with elements from
    Q such that each row and column is a permutation
    of Q.

2 1 3 0
0 3 1 2
1 0 2 3
3 2 0 1
12
Quasigroup operations
  • Given a quasigroup (Q,) two new operations, can
    be derived \ and / defined by
  • xyz ? yx\z ? xz/y.
  • The algebra (Q,,\,/) satisfies the identities
  • x\(xy)y, x(x\y)y, (xy)/yx, (x/y)yx.
  • (Q,\), (Q,/) are qusigroups too.

13
Quasigroup operations
0 1 2 3
0 2 1 0 3
1 3 0 1 2
2 1 2 3 0
3 0 3 2 1
\ 0 1 2 3
0 2 1 0 3
1 1 2 3 0
2 3 0 1 2
3 0 3 2 1
/ 0 1 2 3
0 3 1 0 2
1 2 0 1 3
2 0 2 3 1
3 1 3 2 0
14
Quasigroup string transformations
  • We consider
  • an alphabet A (finite set)
  • the set A of all nonempty finite words
  • quasigroup operation
  • element l?A (leader)
  • ?a1a2...an, where ai?A.
  • We define
  • 4 functions el,, dl,, el,,dl,A? A.

15
Quasigroup string transformations
  • el,(?) b1b2...bn ? b1la1, b2b1a2, ...
    bnbn-1an

a1 a2 ... an-1 an
l b1 b2 ... bn-1 bn
16
Quasigroup string transformations
  • dl,(?) c1c2...cn ? c1la1, c2a1a2, ...
    cnan-1an

l a1 a2 ... an-1 an
c1 c2 ... cn-1 cn
17
Quasigroup string transformations
  • el,(?) b1b2...bn ? b1a1l, b2a2b1, ...
    bnanbn-1

a1 a2 ... an-1 an
l b1 b2 ... bn-1 bn
18
Quasigroup string transformations
  • dl,(?) c1c2...cn ? c1a1l, c2a2a1, ...
    cnanan-1

l a1 a2 ... an-1 an
c1 c2 ... cn-1 cn
19
Quasigroup string transformations
0 1 2 3
0 2 1 0 3
1 3 0 1 2
2 1 2 3 0
3 0 3 2 1
\ 0 1 2 3
0 2 1 0 3
1 1 2 3 0
2 3 0 1 2
3 0 3 2 1
  • Example
  • A0,1,2,3,
  • l0,
  • (A,) and (A,\)

- ?1021000000000112102201010300
? 1021000000000112102201010300
? e0,(?) 1322130213021011211133013130
?d0,\(?) 1021000000000112102201010300
20
Quasigroup string transformations
  • Proposition 1 For each string M?A and each
    leader l?Q it holds that dl,\(el,(M))Mel,(dl,\
    (M)), i.e. el, and dl,\ are mutually inverse
    permutations of A ((el,)-1 dl,\).
  • Proposition 2 For each string M?A and each
    leader l?Q it holds that dl,/(el,(M))Mel,(d
    l,/(M)), i.e. el, and dl,/ are mutually
    inverse permutations of A ((el,)-1 dl,/).

21
Encryption/Decryption functions of SD-(n,k)
  • We use
  • Blocks with length of n letters
  • Key KK0K1...Kn4k-1, Ki?A , where k is number of
    repeating of four different quasigroup string
    transformations in encryption/decryption
    functions
  • Input plaintext m0m1...mn-1, mi?A
  • Output ciphertext c0c1...cn-1, ci?A

22
Encryption algorithm
  • EA1 For i0 to n-1 do biKimi
  • EA2 For j0 to k-1 do
  • b0?Kn4jb0
  • For i0 to n-1 do bi?bi-1bi
  • bn-1?Kn4j1bn-1
  • For in-1 down to 1 do bi-1?bibi-1
  • b0?b0 Kn4j2
  • For i1 to n-1 do bi?bibi-1
  • bn-1?bn-1 Kn4j3
  • For in-1 down to 1 do bi-1?bi-1bi
  • EA3 For i0 to n-1 do ciKibi

23
Decryption algorithm
  • DA1 For i0 to n-1 do biKi\ci
  • DA2 For jk-1 down to 0 do
  • For i1 to n-1 do bi-1?bi-1/bi
  • bn-1?bn-1 /Kn4j3
  • For in-1 down to 1 do bi?bi/bi-1
  • b0?b0 /Kn4j2
  • For i1 to n-1 do bi-1?bi\bi-1
  • bn-1?Kn4j1 \ bn-1
  • For in-1 down to 1 do bi?bi-1\bi
  • b0?Kn4j\b0
  • DA3 For i0 to n-1 do miKi\bi

24
Encryption/Decryption algorithms
  • The algorithms EAK and DAK for fixed K can be
    considered as transformations of the set An
  • EAK(DAK(m0m1...mn-1))m0m1...mn-1
  • DAK(EAK(m0m1...mn-1))m0m1...mn-1.
  • Theorem The transformations EAK and DAK are
    permutations of the set An.

25
Conclusion
  • This is a new family of block ciphers.
  • Very flexible design.
  • Easy implementation.
  • It has a large range of applications.

26
Future Work
  • Cryptanalysis of SD-(n,k).
  • Practical implementation.
  • Design improvement.

27
  • THANK YOU
  • FOR
  • YOUR ATTENTION
Write a Comment
User Comments (0)
About PowerShow.com