Title: THE FAMILY OF BLOCK CIPHERS
1THE FAMILY OF BLOCK CIPHERS SD-(n,k)
S. Markovski D. Gligoroski V. Dimitrova A. Mileva
2Outline
- Introduction
- Block ciphers
- Quasigroups
- Encryption/Decryption Algorithms
- Conclusion
- Future work
3Introduction
- We present a new family of block ciphers
SD-(n,k). - SD-(n,k) is based on the properties of
quasigroup operations and quasigroup string
transformations. - This design allows choosing different level of
security and different kind of performances.
4Block ciphers
- Block cipher is a symmetric key cipher which
operates on fixed-length groups of bits, termed
blocks, with an unvarying transformation.
Plaintext
Ciphertext
E
Key
D
Key
Ciphertext
Plaintext
5Block ciphers
- To encrypt messages longer than block size a
mode of operation is used - Basic mode of operation
- ECB, CBC, OFB, CFB
- Typical key size in bits are
- 40, 56, 64, 80, 128, 192, 256,...
- From 2001 standard is AES witch use
- 128 bits for SECRET
- 192 bits, 256 bits for TOP SECRET
6ECB Electronic Code Book
M0
...
Mn
M1
E
...
E
E
C0
...
Cn
C1
7CBC Cipher Block Chaining
M0
...
Mn
M1
IV
?
?
?
E
...
E
E
C0
...
Cn
C1
8OFB Output FeedBack
M0
...
Mn
M1
IV
E
...
E
E
?
?
?
C0
...
Cn
C1
9CFB Cipher FeedBack
M0
Mn
M1
...
?
?
?
E
...
E
E
IV
C0
Cn
C1
...
10Quasigroup
- Quasigroup (Q,) is a groupoid satisfying the
law - (?u,v?Q)(?!x,y?Q)
- (xuv uyv).
0 1 2 3
0 2 1 3 0
1 0 3 1 2
2 1 0 2 3
3 3 2 0 1
- Q is a finite set.
- is quasigroup oparation.
11Latin square
- Releated combinatorial structure is Latin square.
- Latin square is an nxn matrix with elements from
Q such that each row and column is a permutation
of Q.
2 1 3 0
0 3 1 2
1 0 2 3
3 2 0 1
12Quasigroup operations
- Given a quasigroup (Q,) two new operations, can
be derived \ and / defined by - xyz ? yx\z ? xz/y.
- The algebra (Q,,\,/) satisfies the identities
- x\(xy)y, x(x\y)y, (xy)/yx, (x/y)yx.
- (Q,\), (Q,/) are qusigroups too.
13Quasigroup operations
0 1 2 3
0 2 1 0 3
1 3 0 1 2
2 1 2 3 0
3 0 3 2 1
\ 0 1 2 3
0 2 1 0 3
1 1 2 3 0
2 3 0 1 2
3 0 3 2 1
/ 0 1 2 3
0 3 1 0 2
1 2 0 1 3
2 0 2 3 1
3 1 3 2 0
14Quasigroup string transformations
- We consider
- an alphabet A (finite set)
- the set A of all nonempty finite words
- quasigroup operation
- element l?A (leader)
- ?a1a2...an, where ai?A.
- We define
- 4 functions el,, dl,, el,,dl,A? A.
15Quasigroup string transformations
- el,(?) b1b2...bn ? b1la1, b2b1a2, ...
bnbn-1an
a1 a2 ... an-1 an
l b1 b2 ... bn-1 bn
16Quasigroup string transformations
- dl,(?) c1c2...cn ? c1la1, c2a1a2, ...
cnan-1an
l a1 a2 ... an-1 an
c1 c2 ... cn-1 cn
17Quasigroup string transformations
- el,(?) b1b2...bn ? b1a1l, b2a2b1, ...
bnanbn-1
a1 a2 ... an-1 an
l b1 b2 ... bn-1 bn
18Quasigroup string transformations
- dl,(?) c1c2...cn ? c1a1l, c2a2a1, ...
cnanan-1
l a1 a2 ... an-1 an
c1 c2 ... cn-1 cn
19Quasigroup string transformations
0 1 2 3
0 2 1 0 3
1 3 0 1 2
2 1 2 3 0
3 0 3 2 1
\ 0 1 2 3
0 2 1 0 3
1 1 2 3 0
2 3 0 1 2
3 0 3 2 1
- Example
- A0,1,2,3,
- l0,
- (A,) and (A,\)
- ?1021000000000112102201010300
? 1021000000000112102201010300
? e0,(?) 1322130213021011211133013130
?d0,\(?) 1021000000000112102201010300
20Quasigroup string transformations
- Proposition 1 For each string M?A and each
leader l?Q it holds that dl,\(el,(M))Mel,(dl,\
(M)), i.e. el, and dl,\ are mutually inverse
permutations of A ((el,)-1 dl,\). - Proposition 2 For each string M?A and each
leader l?Q it holds that dl,/(el,(M))Mel,(d
l,/(M)), i.e. el, and dl,/ are mutually
inverse permutations of A ((el,)-1 dl,/). -
21Encryption/Decryption functions of SD-(n,k)
- We use
- Blocks with length of n letters
- Key KK0K1...Kn4k-1, Ki?A , where k is number of
repeating of four different quasigroup string
transformations in encryption/decryption
functions - Input plaintext m0m1...mn-1, mi?A
- Output ciphertext c0c1...cn-1, ci?A
22Encryption algorithm
- EA1 For i0 to n-1 do biKimi
- EA2 For j0 to k-1 do
- b0?Kn4jb0
- For i0 to n-1 do bi?bi-1bi
- bn-1?Kn4j1bn-1
- For in-1 down to 1 do bi-1?bibi-1
- b0?b0 Kn4j2
- For i1 to n-1 do bi?bibi-1
- bn-1?bn-1 Kn4j3
- For in-1 down to 1 do bi-1?bi-1bi
- EA3 For i0 to n-1 do ciKibi
23Decryption algorithm
- DA1 For i0 to n-1 do biKi\ci
- DA2 For jk-1 down to 0 do
- For i1 to n-1 do bi-1?bi-1/bi
- bn-1?bn-1 /Kn4j3
- For in-1 down to 1 do bi?bi/bi-1
- b0?b0 /Kn4j2
- For i1 to n-1 do bi-1?bi\bi-1
- bn-1?Kn4j1 \ bn-1
- For in-1 down to 1 do bi?bi-1\bi
- b0?Kn4j\b0
- DA3 For i0 to n-1 do miKi\bi
24Encryption/Decryption algorithms
- The algorithms EAK and DAK for fixed K can be
considered as transformations of the set An - EAK(DAK(m0m1...mn-1))m0m1...mn-1
- DAK(EAK(m0m1...mn-1))m0m1...mn-1.
- Theorem The transformations EAK and DAK are
permutations of the set An.
25Conclusion
- This is a new family of block ciphers.
- Very flexible design.
- Easy implementation.
- It has a large range of applications.
26Future Work
- Cryptanalysis of SD-(n,k).
- Practical implementation.
- Design improvement.
27- THANK YOU
- FOR
- YOUR ATTENTION