Radiative Transfer Modelling of Martian Surface Regolith Emissivity - PowerPoint PPT Presentation

1 / 25
About This Presentation
Title:

Radiative Transfer Modelling of Martian Surface Regolith Emissivity

Description:

Lab Material = synthetic SiO2 (SIL-CO-SIL 53) Lab Shape = sphere. Lab Size = 0-53 mm diameter ... D. W., J. Opt. Soc. Am. A, 11, ... Opt., 27, 2502-2507, 1988. ... – PowerPoint PPT presentation

Number of Views:26
Avg rating:3.0/5.0
Slides: 26
Provided by: galena
Category:

less

Transcript and Presenter's Notes

Title: Radiative Transfer Modelling of Martian Surface Regolith Emissivity


1
Radiative Transfer Modelling of Martian Surface
Regolith Emissivity
  • Karly Pitman
  • September 25, 2003

2
Martian Surface Emissivity
  • Emissivity its definition and importance
  • How Mars emissivity measurements are taken
  • Directional emissivity
  • Radiative transfer model development
  • Theory lt---gt lab comparisons
  • Implications for Martian regolith particles

3
Emissivity Defined
  • e (power radiated by material) / (power
    radiated by BB _at_ same temperature)
  • L sT4 for blackbody L esT4 for everything
  • e 1.0 gt perfect radiator/absorber

4
The Importance of Emissivity
  • 250 GB of raw emissivity spectral data returned
    by THEMIS alone
  • Emissivity can tell us about mineralogy and, in
    theory, physical properties of grains

5
Reading Emissivity Plots
6
Remote Sensing Emissivities of Mars
7
Possible Explanations
  • Emissivity does depend on e
  • 4 possible competing effects
  • Particle shape
  • Particle size
  • Packing fraction
  • Surface roughness

8
Before Interpreting Orbiter e Data
  • Computer modelling of e for thermal IR l (3-30
    mm)
  • Measure e for particulates in lab
  • Measure e in field (desert terrain)
  • Self-consistent checks

9
How To Densely Pack Particles
  • Filling factor f 1 porosity
  • Static structure factor S 1 / ( 1 nK(x) )

10
How S Affects Emissivity
11
Lab Measurements of Emissivity
  • Instrument transmission spectrometer
  • Grain size fractions from 0-1000 mm
  • Pros easily calibrated Cons size bins,
    compositions

12
RT Model / Lab Comparison
  • RT Material quartz (Wenrich Christensen 1996)
  • RT Shape sphere
  • RT Size 10, 30, 50, 100, 1000 mm radius
  • RT Bin Size 5 mm
  • Lab Material synthetic SiO2 (SIL-CO-SIL
    53)
  • Lab Shape sphere
  • Lab Size 0-53 mm diameter
  • Lab Bin Size 5 mm ltlt in progress gtgt

13
Preliminary Lab Measurements for S
14
Preliminary Lab Measurements for e
15
Field Measurements of Emissivity
  • Identify Martian terrestrial analog sites
  • Instrument portable mFT-IR
  • Pros inexpensive device
  • Cons difficult to operate in field

16
Summary
  • Emissivity is a fundamental physical quantity for
    planetary science that deals with surface
    radiation
  • NASA expects geologists to infer Mars mineralogy
    using thermal IR emissivity spectra we can also
    infer Mars regolith dust physical properties from
    these data
  • Neither lab nor field data should be directly
    compared to Mars remote sensing emissivity data
  • Unexplained directional emissivity effects are
    under investigation as part of a systematic
    theoretical laboratory -
    field comparison project

17
References Resources
  • Christensen, P. R., et al., A thermal emission
    spectral library of rock-forming minerals, J.
    Geophys. Res., 105, E4, 9735-9739, 2000.
  • Jakosky, B. M., G. W. Finiol, and B. G.
    Henderson, Directional variations in thermal
    emission from geologic surfaces, Geophys. Res.
    Lett., 17, 7, 985-988, 1990.
  • Mackowski, D. W., J. Opt. Soc. Am. A, 11,
    2851-2861, 1994.
  • Mishchenko, M. I., JQSRT, 52, 1, 95-110, 1994.
  • Mishchenko, M. I., and Macke, A., JQSRT, 57, 1,
    767-794, 1997.
  • Moersch, J. E., and P. R. Christensen, Thermal
    emission from particulate surfaces A comparison
    of scattering models with measured spectra, J.
    Geophys. Res., 100, E4, 7465-7477, 1995.
  • Stamnes, K., et al., Appl. Opt., 27, 2502-2507,
    1988.
  • Wenrich, M. L., and Christensen, P. R., JGR, 101,
    B7, 15921-15931, 1996.

18
References Resources
  • ASU Mars Space Flight Facility Thermal Emission
    Spectral Library http//tes.asu.edu/speclib/index
    .html
  • Blackbody radiation http//www.omega.com/literatu
    re/transactions/volume1/theoretical2.html
    http//www.cis.rit.edu/drp9420/background.html
  • Graphics courtesy http//imagers.gsfc.nasa.gov/em
    s/infrared.html (Slide 3)http//mars.jpl.nasa.gov/
    odyssey/gallery/instruments/browse/themis-sm.jpg
    (Slide 4), Josh Bandfield Ariz. State Univ.
    Mars Space Flight Facility (Slides 5, 7), Karly
    Pitman (Slides 5, 14), Hapke 1993 p. 185 (Slide
    6, item 1), Clancy Lee 1991 (Slide 6, item 2)

19
Radiative Transfer Model Quantities
  • Phase function p S11 / (Csca k2)
  • Asymmetry parameter g lt cosq gt
  • Scattering cross section Csca
  • Extinction cross section Cext
  • Single-scattering albedo w Csca / Cext
  • Emissivity e 1 R (R depends on I / F)

20
Natural (Angular) Quartz
21
Natural (Angular) Quartz
22
Synthetic (Spherical) Silica
23
Selected Field Sites
24
Directional e on Earth
25
How S Affects RT Quantities
Write a Comment
User Comments (0)
About PowerShow.com