Massive star feedback - PowerPoint PPT Presentation

About This Presentation
Title:

Massive star feedback

Description:

Massive star feedback from the first stars to the present ... Lucy & Solomon (1970) Castor, Abbott & Klein (1975) CAK. 1. CAK Formalism. 1. CAK Formalism ... – PowerPoint PPT presentation

Number of Views:35
Avg rating:3.0/5.0
Slides: 49
Provided by: Vink8
Category:

less

Transcript and Presenter's Notes

Title: Massive star feedback


1
Massive star feedback from the first stars to
the present
Jorick Vink (Imperial College London, UK)
2
Outline
  • Why predict dM/dt ?
  • (as a function of Z?)
  • Methods CAK Monte Carlo
  • Results OB, LBV WR winds
  • Cosmological implications?
  • Look into the Future

3
Why predict Mdot ?
  • Energy Momentum input into ISM

4
Why predict Mdot ?
  • Energy Momentum input into ISM
  • Stellar Evolution

5
Evolution of a Massive Star
Be
O
6
Why predict Mdot ?
  • Energy Momentum input into ISM
  • Stellar Evolution
  • Explosions SN, GRBs

7
Why predict Mdot ?
  • Energy Momentum input into ISM
  • Stellar Evolution
  • Explosions SN, GRBs
  • Final product Neutron star, Black hole

8
Why predict Mdot ?
  • Energy Momentum input into ISM
  • Stellar Evolution
  • Explosions SN, GRBs
  • Final product Neutron star, Black hole
  • X-ray populations in galaxies

9
Why predict Mdot ?
  • Energy Momentum input into ISM
  • Stellar Evolution

10
Why predict Mdot ?
  • Energy Momentum input into ISM
  • Stellar Evolution
  • Stellar Spectra

11
Why predict Mdot ?
  • Energy Momentum input into ISM
  • Stellar Evolution
  • Stellar Spectra
  • Analyses of starbursts

12
Why predict Mdot ?
  • Energy Momentum input into ISM
  • Stellar Evolution
  • Stellar Spectra
  • Analyses of starbursts
  • Ionizing Fluxes

13
Why predict Mdot ?
  • Energy Momentum input into ISM
  • Stellar Evolution
  • Stellar Spectra

14
Why predict Mdot ?
  • Energy Momentum input into ISM
  • Stellar Evolution
  • Stellar Spectra
  • Stellar Cosmology

15
From Scientific American
16
Why predict Mdot ?
  • Energy Momentum input into ISM
  • Stellar Evolution
  • Stellar spectra
  • Stellar cosmology

17
Observations of the first stars
18
Goal quantifying mass loss a function of Z (and
z)
  • What do we know at solar Z ?

19
Radiation-driven wind by Lines
Lucy Solomon (1970) Castor, Abbott
Klein (1975) ? CAK
STAR
Fe
  • dM/dt f (L, Mass, Temp, Z)

20
1. CAK Formalism
21
1. CAK Formalism
22
1. CAK Formalism
? dM/dt V(r)
23
1. CAK Formalism
24
Momentum problem in O star winds
A systematic discrepency
25
2. Monte Carlo approach
(Abbott Lucy 1985)
26
Assumptions in line-force models
  • Static
  • One fluid
  • Spherical
  • Homogeneous, no clumps

27
Two O-star approaches
  • 1. CAK-type
  • ? Line force approximated
  • ? v(r) predicted
  • CAK,
    Pauldrach (1986), Kudritzki (2002)
  • 2. Monte Carlo
  • ? V(r) adopted
  • ? Line force computed for all radii
  • ? multiple scatterings included
  • Abbott
    Lucy (1985)

  • Vink, de Koter Lamers (2000,2001)

28
Monte Carlo Mass loss comparison
(Vink et al. 2000)
No systematic discrepency anymore !
29
Wind momentum-Luminosity relation O stars
(Vink et al. 2000)
30
B Supergiants Wind-Momenta
Vink et al. (2000)
31
The mass loss of LBVs
Vink de Koter (2002)
32
Success of Monte Carlo at solar Z
  • O-star Mass loss rates
  • Prediction of the bi-stability jump
  • Mass loss behaviour of LBVs
  • ? Monte Carlo mass-loss used in stellar
    models in Galaxy

33
dM/dt f(Z) potential effects
  • In CAK dM/dt proportional to k f(Z)
  • Power-law exponent log(dM/dt) m log(Z)
  • More ionization changes? (bi-stability)
  • Power-law for all Z?
  • Power-law flattening?

34
O star mass-loss Z-dependence
(Vink et al. 2001)
35
O star mass-loss Z-dependence
36
O star mass-loss Z-dependence

37
Which metals are important?
solar Z
Fe
CNO
H,He
low Z
At lower Z Fe ? CNO
38
Z-dependence of WR winds
Vink de Koter (2005) astro-ph/0507352
39
Conclusions
  • Successful MC Models at solar Z
  • O star winds are Z-dependent (Fe)
  • WR winds are Z-dependent (Fe) ? GRBs
  • Low-Z WC models flattening of this dependence
  • Below log(Z/Zsun) -3 ? Plateau
  • ? Mass loss may play a role in early Universe

40
Future Work
  • Solving momentum equation
  • Compute Mdot at Z0
  • Wind Clumping
  • Wind geometry at low Z

41
(No Transcript)
42
2-step Approach
  • Compute model atmosphere, ionization
    stratification, level populations
  • Monte Carlo to compute radiative force (line and
    continuum opacity)

43
The bistability Jump
? dM/dt increases by factor 5 ? Wind Density by
factor 10
(Vink et al. 1999)
44

Mass loss Recipe
45
Consistent mass-loss rate
46
Non-consistent velocity law
WC8
Beta 1
47
The First Stars
Credit V. Bromm
48
Why predict Mdot ?
  • Stellar evolution
  • - X-ray populations in galaxies
  • - Gamma-ray bursts
  • Stellar spectra ionizing fluxes
  • - Analyses of galaxy spectra
  • - Reionization of Universe
  • Energy Momentum input into ISM
Write a Comment
User Comments (0)
About PowerShow.com