Title: Massive star feedback
1Massive star feedback from the first stars to
the present
Jorick Vink (Imperial College London, UK)
2Outline
- Why predict dM/dt ?
- (as a function of Z?)
- Methods CAK Monte Carlo
- Results OB, LBV WR winds
- Cosmological implications?
- Look into the Future
3Why predict Mdot ?
- Energy Momentum input into ISM
4Why predict Mdot ?
- Energy Momentum input into ISM
- Stellar Evolution
5Evolution of a Massive Star
Be
O
6Why predict Mdot ?
- Energy Momentum input into ISM
- Stellar Evolution
- Explosions SN, GRBs
7Why predict Mdot ?
- Energy Momentum input into ISM
- Stellar Evolution
- Explosions SN, GRBs
- Final product Neutron star, Black hole
8Why predict Mdot ?
- Energy Momentum input into ISM
- Stellar Evolution
- Explosions SN, GRBs
- Final product Neutron star, Black hole
- X-ray populations in galaxies
9Why predict Mdot ?
- Energy Momentum input into ISM
- Stellar Evolution
10Why predict Mdot ?
- Energy Momentum input into ISM
- Stellar Evolution
- Stellar Spectra
11Why predict Mdot ?
- Energy Momentum input into ISM
- Stellar Evolution
- Stellar Spectra
- Analyses of starbursts
12Why predict Mdot ?
- Energy Momentum input into ISM
- Stellar Evolution
- Stellar Spectra
- Analyses of starbursts
- Ionizing Fluxes
13Why predict Mdot ?
- Energy Momentum input into ISM
- Stellar Evolution
- Stellar Spectra
14Why predict Mdot ?
- Energy Momentum input into ISM
- Stellar Evolution
- Stellar Spectra
- Stellar Cosmology
15From Scientific American
16Why predict Mdot ?
- Energy Momentum input into ISM
- Stellar Evolution
- Stellar spectra
- Stellar cosmology
17Observations of the first stars
18Goal quantifying mass loss a function of Z (and
z)
- What do we know at solar Z ?
19Radiation-driven wind by Lines
Lucy Solomon (1970) Castor, Abbott
Klein (1975) ? CAK
STAR
Fe
- dM/dt f (L, Mass, Temp, Z)
201. CAK Formalism
211. CAK Formalism
221. CAK Formalism
? dM/dt V(r)
231. CAK Formalism
24Momentum problem in O star winds
A systematic discrepency
252. Monte Carlo approach
(Abbott Lucy 1985)
26Assumptions in line-force models
- Static
- One fluid
- Spherical
- Homogeneous, no clumps
27Two O-star approaches
- 1. CAK-type
- ? Line force approximated
- ? v(r) predicted
- CAK,
Pauldrach (1986), Kudritzki (2002) - 2. Monte Carlo
- ? V(r) adopted
- ? Line force computed for all radii
- ? multiple scatterings included
- Abbott
Lucy (1985) -
Vink, de Koter Lamers (2000,2001)
28Monte Carlo Mass loss comparison
(Vink et al. 2000)
No systematic discrepency anymore !
29Wind momentum-Luminosity relation O stars
(Vink et al. 2000)
30B Supergiants Wind-Momenta
Vink et al. (2000)
31The mass loss of LBVs
Vink de Koter (2002)
32Success of Monte Carlo at solar Z
- O-star Mass loss rates
- Prediction of the bi-stability jump
- Mass loss behaviour of LBVs
- ? Monte Carlo mass-loss used in stellar
models in Galaxy
33dM/dt f(Z) potential effects
- In CAK dM/dt proportional to k f(Z)
- Power-law exponent log(dM/dt) m log(Z)
- More ionization changes? (bi-stability)
- Power-law for all Z?
- Power-law flattening?
34O star mass-loss Z-dependence
(Vink et al. 2001)
35O star mass-loss Z-dependence
36O star mass-loss Z-dependence
37Which metals are important?
solar Z
Fe
CNO
H,He
low Z
At lower Z Fe ? CNO
38Z-dependence of WR winds
Vink de Koter (2005) astro-ph/0507352
39Conclusions
- Successful MC Models at solar Z
- O star winds are Z-dependent (Fe)
- WR winds are Z-dependent (Fe) ? GRBs
- Low-Z WC models flattening of this dependence
- Below log(Z/Zsun) -3 ? Plateau
- ? Mass loss may play a role in early Universe
40Future Work
- Solving momentum equation
- Compute Mdot at Z0
- Wind Clumping
- Wind geometry at low Z
41(No Transcript)
422-step Approach
- Compute model atmosphere, ionization
stratification, level populations - Monte Carlo to compute radiative force (line and
continuum opacity)
43The bistability Jump
? dM/dt increases by factor 5 ? Wind Density by
factor 10
(Vink et al. 1999)
44 Mass loss Recipe
45Consistent mass-loss rate
46Non-consistent velocity law
WC8
Beta 1
47The First Stars
Credit V. Bromm
48Why predict Mdot ?
- Stellar evolution
- - X-ray populations in galaxies
- - Gamma-ray bursts
- Stellar spectra ionizing fluxes
- - Analyses of galaxy spectra
- - Reionization of Universe
- Energy Momentum input into ISM