Massive star feedback - PowerPoint PPT Presentation

About This Presentation
Title:

Massive star feedback

Description:

Massive star feedback from the first stars to the present Jorick Vink (Keele University) – PowerPoint PPT presentation

Number of Views:110
Avg rating:3.0/5.0
Slides: 78
Provided by: vink150
Learn more at: http://www.eso.org
Category:

less

Transcript and Presenter's Notes

Title: Massive star feedback


1
Massive star feedback from the first stars to
the present
Jorick Vink (Keele University)
2
Outline
  • Why predict Mass-loss rates?
  • (as a function of Z)
  • Monte Carlo Method
  • Results OB, Be, LBV WR winds
  • Cosmological implications?
  • Look into the Future

3
Why predict Mdot ?
  • Energy Momentum input into ISM

4
Massive star feedback
NGC 3603
5
Why predict Mdot ?
  • Energy Momentum input into ISM

6
Why predict Mdot ?
  • Energy Momentum input into ISM
  • Stellar Evolution

7
Evolution of a Massive Star
Be
O
8
Why predict Mdot ?
  • Energy Momentum input into ISM
  • Stellar Evolution
  • Explosions SN, GRBs

9
Progenitor for Collapsar model
  • Rapidly rotating
  • Hydrogen-free star (Wolf-Rayet star)
  • But

Woosley (1993)
10
Progenitor for Collapsar model
  • Rapidly rotating
  • Hydrogen-free star (Wolf-Rayet star)
  • But
  • Stars have winds

Woosley (1993)
11
Why predict Mdot ?
  • Energy Momentum input into ISM
  • Stellar Evolution
  • Explosions SN, GRBs
  • Final product Neutron star, Black hole

12
Why predict Mdot ?
  • Energy Momentum input into ISM
  • Stellar Evolution
  • Explosions SN, GRBs
  • Final product Neutron star, Black hole
  • X-ray populations in galaxies

13
Why predict Mdot ?
  • Energy Momentum input into ISM
  • Stellar Evolution

14
Why predict Mdot ?
  • Energy Momentum input into ISM
  • Stellar Evolution
  • Stellar Spectra

15
Why predict Mdot ?
  • Energy Momentum input into ISM
  • Stellar Evolution
  • Stellar Spectra
  • Analyses of starbursts

16
Why predict Mdot ?
  • Energy Momentum input into ISM
  • Stellar Evolution
  • Stellar Spectra
  • Analyses of starbursts
  • Ionizing Fluxes

17
Why predict Mdot ?
  • Energy Momentum input into ISM
  • Stellar Evolution
  • Stellar Spectra

18
Why predict Mdot ?
  • Energy Momentum input into ISM
  • Stellar Evolution
  • Stellar Spectra
  • Stellar Cosmology

19
From Scientific American
20
The First Stars
Credit V. Bromm
21
The Final products of Pop III stars
(Heger et al. 2003)
22
From Scientific American
23
Why predict Mdot ?
  • Energy Momentum input into ISM
  • Stellar Evolution
  • Stellar spectra
  • Stellar cosmology

24
Observations of the first stars
25
Goal quantifying mass loss a function of Z (and
z)
  • What do we know at solar Z ?

26
Radiation-driven wind by Lines
Lucy Solomon (1970) Castor, Abbott Klein
(1975) CAK
Wind
STAR
Fe
  • dM/dt f (Z, L, M, Teff)

27
Radiation-driven wind by Lines
Abbott Lucy (1985)
  • dM/dt f (Z, L, M, Teff)

28
Momentum problem in O star winds
A systematic discrepancy
29
Monte Carlo approach
30
Approach
  • Assume a velocity law
  • Compute model atmosphere, ionization
    stratification, level populations
  • Monte Carlo to compute radiative force

31
Mass loss parameter study
32
Monte Carlo Mass loss comparison
(Vink et al. 2000)
No systematic discrepancy anymore !
33
Lamers et al. (1995) Crowther et al.
(2006)
34
Monte Carlo Mass-loss rates
? dM/dt increases by factor 3-5
(Vink et al. 1999)
35
The bi-stability Jump
  • HOT
  • Fe IV
  • low dM/dt
  • high Vinf
  • Low density
  • COOL
  • Fe III
  • high dM/dt
  • low Vinf
  • High density

36
Stars should pass the bistable limit
  • During evolution from O ? B
  • LBVs on timescales of years

37
LBVs in the HRD
Smith, Vink de Koter (2004)
38
The mass loss of LBVs
Models
Data
Stahl et al. (2001) Vink de
Koter (2002)
39
Stars should pass the bistable limit
  • During evolution from O ? B
  • LBVs on timescales of years
  • Implications for circumstellar medium (CSM)
  • Mass-loss rate up 2
  • wind velocity down 2
  • CSM density variations 4

40
SN-CSM interaction ? radio
Weiler et al. (2002)
41
Mass Loss Results from Radio SNe
OB star? WR?
42
SN 2001ig 2003bg
2003bg
2001ig
Soderberg et al. (2006)
Ryder et al. (2004)
43
Progenitors
  • AGB star
  • Binary WR system
  • WR star
  • LBV

44
Progenitors
  • AGB star
  • Binary WR system
  • WR star
  • LBV

Kotak Vink (2006)
45
Assumptions in line-force models
  • Stationary
  • One fluid
  • Spherical

46
Polarimetry from disks
47
Depolarisation
48
Asphericity in LBV HR CAR
(Davies, Oudmaijer Vink 2005) SURVEY
asphericity found in 50
49
Variable polarization in AG CAR
(Davies, Oudmaijer Vink 2005) ?
RANDOM CLUMPS!!
50
Assumptions in line-force models
  • Stationary
  • One fluid
  • Spherical
  • Homogeneous, no clumps

51
Success of Monte Carlo at solar Z
  • O-star Mass loss rates
  • Prediction of the bi-stability jump
  • Mass loss behaviour of LBVs like AG Car
  • ? Monte Carlo mass-loss used in stellar
    models in Galaxy

52
O star mass-loss Z-dependence
(Vink et al. 2001)
53
O star mass-loss Z-dependence
Kudritzki (2002) --- Vink et al. (2001)
54
O star mass-loss Z-dependence

55
Which metals are important?
Vink et al. (2001)
solar Z
Fe
CNO
H,He
low Z
At lower Z Fe ? CNO
56
WR stars produce Carbon !
Geneva models (Maeder Meynet 1987)
57
WR stars produce Carbon !
Geneva models (Maeder Meynet 1987)
58
Which element drives WR winds?
  • C ? WR mass loss not Z(Fe)-dependent
  • Fe ? WR mass loss depends on Z host

59
Z-dependence of WR winds
WN
WC
Vink de Koter (2005, AA 442, 587)
60
Corollary of lower WR mass loss
  • ? less angular momentum loss
  • ? favouring the collapse of WR stars to produce
    GRBs
  • ? Long-duration GRBs favoured at low Z

61
Conclusions
  • Successful MC Models at solar Z
  • O star winds are Z-dependent (Fe)
  • WR winds are Z-dependent (Fe) ? GRBs
  • Low-Z WC models flattening of this dependence
  • Below log(Z/Zsun) -3 ? Plateau
  • ? Mass loss may play a role in early Universe

62
Future Work
  • Solving momentum equation
  • Wind Clumping
  • Compute Mdot close to Eddington limit

63
Mass loss Eddington Limit
Gamma5
Vink (2006) - astro-ph/0511048
64
Future Work
  • Solving momentum equation
  • Wind Clumping
  • Compute Mdot close to Eddington limit
  • Compute Mdot at subsolar and Z 0

65
From Scientific American
66
(No Transcript)
67
Non-consistent velocity law
WC8
Beta 1
68
Wind momenta at low Z
Data (Mokiem)
Models (Vink)
Vink et al. (2001) Mokiem et al.
(2007)
69
Two O-star approaches
  • 1. CAK-type
  • ? Line force approximated
  • ? v(r) predicted
  • CAK,
    Pauldrach (1986), Kudritzki (2002)
  • 2. Monte Carlo
  • ? V(r) adopted
  • ? Line force computed for all radii
  • ? multiple scatterings included
  • Abbott
    Lucy (1985)

  • Vink, de Koter Lamers (2000,2001)

70
Advantages of our method
  • Non-LTE
  • Unified treatment (no core-halo)
  • Monte Carlo line force at all radii
  • Multiple scatterings
  • ? O stars at solar Z low Z
  • LBV variability WR as a function of Z

71
The bi-stability Jump
  • HOT
  • Fe IV
  • low dM/dt
  • high V(inf)
  • Low density
  • COOL
  • Fe III
  • dM/dt 5 dM/dt HOT
  • V(inf) ½ vinf HOT
  • High density 10 HOT

72
The reason for the bi-stability jump
  • Temperature drops
  • ? Fe recombines from Fe IV to Fe III
  • ? Line force increases
  • ? dM/dt up
  • ? density up
  • ? V(inf) drops
  • ? Runaway

73
Quantifying the effect of the velocity law
74
Can we use our approach for WR stars?
  • Potential problems
  • Are these winds radiatively driven?
  • Is Beta 1 a good velocity law?
  • Do we miss any relevant opacities?
  • What about wind clumping?

75
B Supergiants Wind-Momenta
Vink, de Koter Lamers (2000)
76
New Developments
  • Hot Iron Bump Fe X --- Fe XVI
  • Graefener Hamann (2005) can drive
  • a WC5 star self-consistently
  • ? Use Monte Carlo approach for a differential
    study of Mass loss versus Z

77
The bi-stability jump at B1
Lamers et al. (1995) Pauldrach Puls (1990)
Write a Comment
User Comments (0)
About PowerShow.com