MPEG4 Fine Grained Scalable Multi-Resolution Layered Video Encoding - PowerPoint PPT Presentation

1 / 24
About This Presentation
Title:

MPEG4 Fine Grained Scalable Multi-Resolution Layered Video Encoding

Description:

MPEG4 Fine Grained Scalable Multi-Resolution ... W. Li, 'Overview of Fine Granularity Scalability in MPEG-4 Video ... Use Canny edge detector to detect ... – PowerPoint PPT presentation

Number of Views:52
Avg rating:3.0/5.0
Slides: 25
Provided by: nslabEe
Category:

less

Transcript and Presenter's Notes

Title: MPEG4 Fine Grained Scalable Multi-Resolution Layered Video Encoding


1
MPEG4 Fine Grained Scalable Multi-Resolution
Layered Video Encoding
  • Authors from University of Georgia
  • Speaker Chang-Kuan Lin

2
Reference
  • S. Chattopadhyay, S. M. Bhandarkar, K. Li,
    FGS-MR MPEG4 Fine Grained Scalable
    Multi-Resolution Layered Video Encoding, ACM
    NOSSDAV 2006.
  • W. Li, Overview of Fine Granularity Scalability
    in MPEG-4 Video Standard, IEEE Trans. on
    Circuits and Systems for Video Technology, Vol.
    11, No. 3, pp. 301-317, Mar. 2001.
  • H. Radha, M. van der Schaar, and Y. Chen, The
    MPEG-4 fine-grained scalable video coding method
    for multimedia streaming over IP, IEEE Trans. on
    Multimedia, vol.3, pp. 5368, Mar. 2001.

3
Outline
  • Introduction
  • MPEG-4 Fine Grained Scalability
  • Motivation
  • FGS-AQ vs. FGS-MR
  • Experimental Results
  • Conclusion

4
Introduction
  • MPEG4 Fine Grained Scalability (FGS) profile for
    streaming video
  • Base Layer Bit Stream
  • must exist at the decoder
  • has coarsely quantized DCT coefficients
  • provides the minimum video quality
  • Enhancement Layer Bit Stream
  • can be absent at the decoder
  • contains encoded DCT coefficient differences
  • provides higher quality
  • can be truncated to fit the target bit rate

5
FGS Encoding Block Diagram
6
Motivation
  • Base Layer video quality is usually not
    satisfactory
  • in order to provide a wide range of bit rate
    adaptation
  • MPEG4 FGS Adaptive Quantization (FGS-AQ) for Base
    Layer video does not provide good rate-distortion
    (R-D) performance
  • parameter overhead at the decoder
  • Proposed FGS-MR
  • no parameter overhead to transmit
  • transparent the codec
  • better rate-distortion performance

7
Outline
  • Introduction
  • MPEG-4 Fine Grained Scalability
  • Motivation
  • FGS-AQ vs. FGS-MR
  • FGS-AQ
  • FGS-MR
  • MR-Mask Creation
  • MR-Frame
  • Experimental Results
  • Conclusion

8
FGS Adaptive Quantization (AQ)
  • Goals
  • To improve visual quality
  • To better utilize the available bandwidth
  • Method
  • Define different quantization step sizes for
    different transform coefficients
  • within a macro-block (low freq. DCT coeff. gt
    small step size)
  • for different macro-blocks (different
    quantization factors)
  • Disadvantages
  • R-D performance degrades due to FGS-AQ parameter
    overhead

9
Proposed Multi-Resolution FGS (FGS-MR)
  • Goal
  • To improve the visual quality
  • To better utilize the available bandwidth
  • No transmission overhead and hence maintaining
    the R-D performance
  • Method
  • Apply a low-pass filter on visually unimportant
    portion of the original video frame before
    encoding.

10
Two Equivalent Operations
  • Apply a low-pass filter on the spatial domain of
    an image
  • Truncate DCT coefficients in the corresponding
    transform domain of an image

11
FGS-MR Process (Step 1)
  • MR-Mask creation
  • Use Canny edge detector to detect edges
  • Weight Mask
  • an weight parameter wi, j for each pixel p(i, j)
    of an image, 0 ? wi, j ?1
  • wi, j 1, if p(i, j) is on the edge
  • 0 lt wi, j ?1, if p(i, j) is near edge
  • wi, j 0, if p(i, j) is in non-edge region

12
Original (5.12Mbps)
13
MR-Mask
14
FGS-MR Process (Step 2)
  • MR-Frame Creation
  • VI (I-W) VL W VH
  • VF Iteration( VI, G(sI))
  • Note
  • VI contains abrupt changes in resolution
  • VF is a smooth version of VI
  • Parameters
  • Vo original video frame
  • VL low resolution frame from the convolution of
    Vo and G(sL)
  • VH high resolution frame from the convolution
    of Vo and G(sH)
  • VI intermediate video frame
  • VF final multi-resolution frame
  • I matrix with all entries as 1
  • W MR-mask weight matrix
  • G(s) Gaussian filter with standard deviation of
    sas LPF
  • sL gtsH

15
Original (5.12Mbps)
16
FGS-AQ (0.17Mbps, PSNR 22.77dB)
17
FGS-MR (0.17Mbps, PSNR 26.5dB)
18
Determine Parameters
  • sL, sH, and sI
  • to control the bit rate
  • W (weight matrix)
  • to control the quality of the encoded video frame
  • Figure of merit function dQ/C
  • Q 2( PSNR(sL, sH, sI)/10 )
  • or PSNR 10log(Q)
  • C compression ratio
  • The authors empirically determine the parameters
  • sL 15, sL 3, and varying sI

19
Outline
  • Introduction
  • MPEG-4 Fine Grained Scalability
  • Motivation
  • FGS-AQ vs. FGS-MR
  • FGS-AQ
  • FGS-MR
  • Experimental Results
  • Rate Distortion
  • Resource Consumption
  • Conclusion

20
Experiments
  • Video 1
  • 320x240, fps 30
  • A single person walking in a well lighted room
  • Video 2
  • 176x144, fps 30
  • A panning view across a poorly lighted room.
  • No moving object

21
Rate Distortion Performance
  • Vary sI from 3 to 25 to adjust the target bit rate

22
Power Consumption
  • Energy used and hence power consumed by wireless
    network interface card (WNIC)

T time duration S data size b the bit rate of
streaming video B available BW ER energy used
by WNIC during data reception Es energy used by
WNIC when sleeping
23
Power Consumption Comparison
24
Conclusion
  • The rate distortion performance of FGS-MR is
    better than FGS-AQ.
  • FGS-MR can be seamlessly integrated into existing
    MPEG4 codec.
  • My comment
  • Processing time issue of FGS-MR
  • Empirical determined filter parameters
Write a Comment
User Comments (0)
About PowerShow.com