Title: Dynamics of High-Dimensional Systems
1Dynamics of High-Dimensional Systems
- J. C. Sprott
- Department of Physics
- University of Wisconsin - Madison
- Presented at the
- Santa Fe Institute
- On July 27, 2004
2Collaborators
- David Albers, SFI U. Wisc - Physics
- Dee Dechert, U. Houston - Economics
- John Vano, U. Wisc - Math
- Joe Wildenberg, U. Wisc - Undergrad
- Jeff Noel, U. Wisc - Undergrad
- Mike Anderson, U. Wisc - Undergrad
- Sean Cornelius, U. Wisc - Undergrad
- Matt Sieth, U. Wisc - Undergrad
3Typical Experimental Data
5
x
-5
500
Time
0
4How common is chaos?
1
Logistic Map xn1 Axn(1 - xn)
Lyapunov Exponent
-1
-2
4
A
5A 2-D Example (Hénon Map)
2
b
xn1 1 axn2 bxn-1
-2
a
-4
1
6General 2-D Iterated Quadratic Map
- xn1 a1 a2xn a3xn2 a4xnyn a5yn a6yn2
- yn1 a7 a8xn a9xn2 a10xnyn a11yn
a12yn2
7General 2-D Quadratic Maps
100
Bounded solutions
10
Chaotic solutions
1
0.1
amax
0.1
1.0
10
8High-Dimensional Quadratic Maps and Flows
Extend to higher-degree polynomials...
9Probability of Chaotic Solutions
100
Iterated maps
10
Continuous flows (ODEs)
1
0.1
Dimension
1
10
10Correlation Dimension
5
Correlation Dimension
0.5
1
10
System Dimension
11Lyapunov Exponent
10
1
Lyapunov Exponent
0.1
0.01
1
10
System Dimension
12Neural Net Architecture
tanh
13 Chaotic in Neural Networks
D
14Attractor Dimension
N 32
DKY 0.46 D
D
15Routes to Chaos at Low D
16Routes to Chaos at High D
17Multispecies Lotka-Volterra Model
- Let xi be population of the ith species
(rabbits, trees, people, stocks, ) - dxi / dt rixi (1 - S aijxj )
- Parameters of the model
- Vector of growth rates ri
- Matrix of interactions aij
- Number of species N
N
j1
18Parameters of the Model
Growth rates
Interaction matrix
1 r2 r3 r4 r5 r6
1 a12 a13 a14 a15 a16 a21 1 a23 a24 a25 a26 a31
a32 1 a34 a35 a36 a41 a42 a43 1 a45 a46 a51
a52 a53 a54 1 a56 a61 a62 a63 a64 a65 1
19Choose ri and aij randomly from an exponential
distribution
1
P(a) e-a
P(a)
a - LOG(RND)
mean 1
0
a
0
5
20Typical Time History
15 species
xi
Time
21Probability of Chaos
- One case in 105 is chaotic for N 4 with all
species surviving - Probability of coexisting chaos decreases with
increasing N - Evolution scheme
- Decrease selected aij terms to prevent extinction
- Increase all aij terms to achieve chaos
- Evolve solutions at edge of chaos (small
positive Lyapunov exponent)
22Minimal High-D Chaotic L-V Model
dxi /dt xi(1 xi-2 xi xi1)
1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1
1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 1 1 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 1 1 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 1 1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 1 1 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 1 1 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 1 1 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 1 1 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1
1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1
23Space
Time
24Route to Chaos in Minimal LV Model
25Other Simple High-D Models
26(No Transcript)
27Summary of High-D Dynamics
- Chaos is the rule
- Attractor dimension is D/2
- Lyapunov exponent tends to be small (edge of
chaos) - Quasiperiodic route is usual
- Systems are insensitive to parameter perturbations
28References
- http//sprott.physics.wisc.edu/
lectures/sfi2004.ppt (this talk) - sprott_at_physics.wisc.edu (contact me)