Deuterium retention mechanisms in beryllium - PowerPoint PPT Presentation

1 / 40
About This Presentation
Title:

Deuterium retention mechanisms in beryllium

Description:

... retention mechanisms in beryllium. M. Reinelt, Ch. ... D implantation into beryllium. Deuterium retention / thermal recycling of ... in beryllium ... – PowerPoint PPT presentation

Number of Views:53
Avg rating:3.0/5.0
Slides: 41
Provided by: matthias82
Category:

less

Transcript and Presenter's Notes

Title: Deuterium retention mechanisms in beryllium


1
Deuterium retention mechanisms in beryllium
M. Reinelt, Ch. Linsmeier Max-Planck-Institut
für Plasmaphysik EURATOM Association, Garching
b. München, Germany
PSI-18 28 May 2008
2
Outline
  • Motivation
  • Results of thermal release experiments
  • Variation of ...
  • Irradiation fluence
  • Implantation temperature
  • BeO coverage
  • Modeling ? Energy diagram of D / Be
  • Conclusion

ITER cross section
3
Motivation
Be 700 m2
D implantation into beryllium Deuterium
retention / thermal recycling of ITER main
wall Be Fast reaction with O2 / H2O Previous
experiments BeO contaminated surfaces
Investigation of System Be (BeO) / D Clean
Be / D NO DATA !
D,T
4
Motivation
Be 700 m2
Anderl et al. 1999
D,T
Variation by 1 ORDER OF MAGNITUDE !
5
Concept
  • Possible reasons
  • Undefined BeO coverage
  • Undefined crystallinity
  • Unclear retention mechanisms
  • (Needed for quantification)
  • Issues to be solved
  • Retention in pure Be ?
  • Crystallinity
  • Influence of BeO ?
  • Retention mechanisms ?

6
Experimental concept
in situ... (10-11 mbar)
TPD Temperature Programmed Desorption
  • Sequential release of D
  • Limited by combination of
  • bulk surface
  • processes
  • Energy barriers for ...
  • Diffusion
  • Detrapping
  • Recombination

Ar sputter cleaning annealing XPS /
LEIS Control of surface
Thermal release
NRA
Retention mechanisms
1 keV D implantation
Hydrogen retention
Single crystalline Be
7
TPD Spectrum
Sequential release Energetically different rate
limiting steps
  • 1 keV D Implantation (300 K)
  • 21017 D cm-2

m/q 4 (D2)
8
TPD Increasing fluence
TPD Spectra recorded in random order ! ? Fluence
dependent behaviour
9
TPD Increasing fluence
Trapping in ion induced defects
10
TPD Increasing fluence
Structural modifications
Trapping in ion induced defects
Local saturation of available binding sites
11
TPD Increasing fluence
Structural modifications
Sample saturation
Threshold
12
Retention Simulation by SDTrim.SP
Super saturation zone
  • D accumulation
  • in a depth of 40 nm
  • Bulk saturation
  • concentration
  • 26 at D
  • (D/Be 0.35)
  • Supersaturation
  • Structural
  • modifications
  • Surface process?

(cut off)
SDTrim.SP Calculation
TPD Experiments
13
Structural modifications / Surface desorption

1st order release 1 DTrapped ? DMobile 2nd
order release 2 D ? D2 (Surface
desorption)
14
Structural modifications / Surface desorption
Peak shape Desorption peak is 1st
order Surface area (AFM) Release of 60 x T
(saturation coverage T 0.5) AFM max.
1.2 T ? Surface recom-bination is not the
rate-limiting step

15
TPD Influence of BeO-coverage
No change of EA of release from binding
states No recombination limit ?
Trapping in the bulk Formation of
BeO-D at the surface
BeOD (surface)
16
TPD Elevated implantation temperatures
530 K
300K
17
TPD Elevated implantation temperatures
Different retention mechanism !
Change of the binding states in the
supersaturated areas
Ion-induced trap sites unaffected
300K
530 K
18
TPD Elevated implantation temperatures
Different retention mechanism !
Change of the binding states in the
supersaturated areas BeD2 formation
(Decomposition 570 K)
BeOD (surface)
Ion-induced trap sites unaffected
BeD2
300K
530 K
19
Implanted / Co-deposited
1 keV Ion implanted (this work) D/Be plasma
co-deposited (de Temmerman)
300 K
20
Implanted / Co-deposited
300 K
1 keV Ion implanted (this work) D/Be plasma
co-deposited (de Temmerman)
Supersaturated material
21
Implanted / Co-deposited
300 K
1 keV Ion implanted (this work) D/Be plasma
co-deposited (de Temmerman)
Ion-induced traps in the bulk
22
Implanted / Co-deposited
Formation of BeD2 see also poster P3-05 by R.
Doerner
300 K
600 K 530 K
23
Qualitative interpretation of data
Ion-induced traps in the bulk lattice
Structural modifications
BeD2
Constant retention
Be ( BeO) 1 and 1.5 keV
clean Be (1 keV)
Anderl et al. 1999
300 400 500 600 700 800
900 1000 Specimen exposure
temperature K
24
Identification of retention mechanisms Quantifi
cation TMAP7 / Rate equations
25
TMAP7 D transport bulk / surface
  • Input parameters
  • Trap concentration
  • profile by SDTrim.SP
  • Saturated trap sites (TPD)
  • Temperature ramp (TPD)
  • Literature
  • Diffusion barrier 0.29 eV
  • Dissolution energy 0.1 eV
  • Free parameters

Detrapping energies ET1 1.88 eV ET2 2.05
eV
26
Schematic energy diagram
TPD Spectrum ? Activation energies
Atomic D E0 0
0
Position / State
E (D-Atom)
Temperature K
Desorption rate a.u.
27
Schematic energy diagram
Positions in the undisturbed bulk lattice
E (D-Atom)
Mobile state ?ED 0.29 eV
Atomic D E0 0
ES -0.10 eV
Temperature K
Desorption rate a.u.
28
Schematic energy diagram
Surface processes
E (D-Atom)
Mobile state ?ED 0.29 eV
Atomic D E0 0
ES -0.10 eV
?EAd 0.87 eV
Temperature K
Molecular D2 EBE (1/2 D2) -2.278 eV
Surface
Desorption rate a.u.
29
Schematic energy diagram
Activation energies obtained from modeling of TPD
spectra
E (D-Atom)
Mobile state ?ED 0.29 eV
Atomic D E0 0
ES -0.10 eV
?EAd 0.87 eV
Temperature K
Molecular D2 EBE (1/2 D2) -2.278 eV
Surface
Desorption rate a.u.
30
Schematic energy diagramm
Activation energies obtained from modelling of
TPD spectra
E (D-Atom)
Mobile state ?ED 0.29 eV
Atomic D E0 0
ES -0.10 eV
?EAd 0.87 eV
?E 1.25 eV 1.33 eV
BeD2
Temperature K
Molecular D2 EBE (1/2 D2) -2.278 eV
?E 1.88 eV 2.05 eV
Surface
Desorption rate a.u.
Ion-induced defects
Supersaturated states
31
Conclusion
  • Deuterium retention in beryllium
  • Binding states / retention mechanisms identified
    and quantified
  • Hydrogen retention in ITER negligible
    contribution of "pure" Be wall
  • (lt 7 g T by implantation)
  • Thin BeO surface layers are not rate-limiting
    for thermal recycling
  • Formation of BeD2 at elevated temperatures
  • Currently DFT calculations
  • ? Detailed understanding of D / Be

32
(No Transcript)
33
(No Transcript)
34
Appendix
35
Surface desorption ?
Literature data Lossev,Küppers 1993
36
Substrate characterization SEM
Cleaning Cycles of 3 keV Ar / 1000 K ?
Recrystallization erosion
37
Substrate characterization SEM
SEM
(1010)
(1120)
T ? 1000 K, several hours Recrystallization to
low indexed facets

38
Substrate characterization AFM
AFM
500 nm
  • Recrystallization
  • Erosion
  • D Induced structural modifications
  • Cycles of
  • Cleaning
  • D Implantation
  • Degassing 1000 K

39
SEM bubble channel formation ?
This work
Anderl et al. 1992
Higher fluences ? Const. retention ?
Aggregation ! ? Bubbles, pores, OPEN
channels
Fluence 41017 D cm-2 ? CLOSED nanosized
structural modifications !
40
Chemical surface composition
XPS
cleaned annealed
  • BeO coverage lt 0.2 ML
  • lt 1day (10-11 mbar)
  • gt 1000 K
  • Cleaning by Ar
  • bombardment
  • Annealing 1000 K
Write a Comment
User Comments (0)
About PowerShow.com