Fitting the diffusion model to experimental data - PowerPoint PPT Presentation

1 / 39
About This Presentation
Title:

Fitting the diffusion model to experimental data

Description:

Weighted mixture of process distribution and contaminant ... Increase flexibility (e.g. nonrandom fluctuation in parameters) Bayesian. Fin. Suggestions? ... – PowerPoint PPT presentation

Number of Views:62
Avg rating:3.0/5.0
Slides: 40
Provided by: joachimvan
Category:

less

Transcript and Presenter's Notes

Title: Fitting the diffusion model to experimental data


1
Fitting the diffusion model to experimental data
  • Methods and tools

Joachim Vandekerckhove and Francis
Tuerlinckx Research Group Quantitative and
Personality Psychology University of Leuven,
Belgium
2
Overview
  • The Ratcliff diffusion model
  • Handling outliers
  • Parameter reduction
  • Fitting the model
  • The DMA Toolbox
  • Statistical inference
  • Simulations

3
The Ratcliff diffusion model
  • Produces bivariate predictions
  • Reaction times
  • Binary response
  • Separate, interpretable parameters
  • Speed-accuracy trade-off (a)
  • Response bias (z)
  • Stimulus quality (v)
  • Nondecision time (Ter)

4
The Ratcliff diffusion model
5
Handling outliers
  • Classical methods
  • Absolute cut-off (e.g. 300-3000ms)
  • Relative cut-off (e.g. 2.5 SD)
  • Newer methods
  • Weighted mixture of process distribution and
    contaminant distribution(s) (Mixture model)
  • Exponentially weighted moving average (EWMA)

6
Outliers Mixture Model
  • Explicit modeling of outliers (fast and slow)

Guess distribution
Delayed startup distribution
7
Outliers Mixture Model
  • Two new parameters
  • p probability of diffusion process
  • g probability of fast guess (distributes density
    over response options)

8
Outliers EWMA
  • Some outliers are fast guesses
  • Exponentially weighted moving average
  • From statistical quality control
  • Detects deviation from chance performance

9
Outliers EWMA
  • EWMA algorithm
  • sort RTs (from all conditions) choices
  • choose constants L1.5, l.01
  • compute zi lxi(1-l)z(i-1) and UCLi
  • if zi lt UCLi ? fast guess
  • otherwise ? lower limit of diffusion process
    reached
  • delete observations below this lower limit

10
(No Transcript)
11
Handling outliers
  • Mixture model approach
  • Exponentially weighted moving average
  • Both can be combined
  • (resulting in lower g)

12
Reducing parameters
  • Reduce processing load
  • On the fitting algorithm
  • On the substantive researcher (interpretation!)
  • More efficient fitting

13
Reducing parameters
  • A normal parameter set (C conditions)

14
Reducing parameters
  • Absolute fixing
  • E.g. Range of nondecision time st 0

15
Reducing parameters
  • Relative fixing
  • E.g. Starting point zi ½boundary separation ai

16
Reducing parameters
  • Design fixing
  • Describe diffusion parameter vectors as products
    of design matrices D and design parameter vectors
    ?

17
Reducing parameters
  • E.g. Nondecision times Ter(1), , Ter(C) equal

! New notation Design parameter vector
18
Reducing parameters
  • E.g. Nondecision times Ter(1), , Ter(C) equal

19
Reducing parameters
  • E.g. Linear increase in drift rate according to
    a known covariate E

20
Reducing parameters
  • Across-condition effect on drift rate only, no
    effects on other parameters

21
Reducing parameters
  • Advantages
  • Less parameters to worry about (Last example 8C
    parameters instead of 9C)
  • Impose regression models on diffusion model
    parameters
  • Test hypotheses by comparing models

22
Fitting the model
  • Grouped Maximum Likelihood
  • Fixed bins

23
Fitting the model
  • Choose a parameter set
  • Compute expected proportions Paxi
  • Condition a
  • Response x
  • Bin i

Upper bound of bin i
Lower bound of bin i
24
Fitting the model
  • Calculate observed frequency Oaxi
  • Compute deviance ?P
  • Minimize ? over all P

25
Fitting the model
  • Optimization problems
  • Computationally intensive
  • Local minima
  • Strategies
  • Good starting guess (EZDIFF)
  • Several Nelder-Mead simplex runs
  • Jump from suspicious points

26
The DMA Toolbox
  • Efficient and accurate
  • Easy to use
  • Fast
  • Freely downloadable (sometime soon)
  • http//ppw.kuleuven.be/okp/dmatoolbox/

27
(No Transcript)
28
Data panel
Settings panels
Queue panel
Tools panel
Status
29
(No Transcript)
30
(No Transcript)
31
(No Transcript)
32
Statistical inference
  • Compare parameters (Wald test / d method)
  • Compare nested models (likelihood ratio)
  • Compare nonnested models (information criteria)

33
Statistical inference
  • Compare nested models

34
Simulations Outlier treatment
  • Added outliers (2.5 fast, 2.5 slow)
  • Disabled/enabled outlier treatment

Relative bias ()
p -1 g -90
Standard errors (1000)
p 6 g 90
35
Simulations Power analysis
  • Generate 1000 data sets
  • N 250 in each of 4 conditions
  • Drift rate varies over conditions (e.g. 0.00
    0.10 0.20 0.30)
  • Evaluate significance of difference (??)
  • No-effects model
  • Model allowing drift rate changes
  • Significant in gt99 of data sets (a 10-6)

36
Simulations Selectivity
  • Generate 1000 data sets
  • N 250 in each of 4 conditions
  • All parameters constant over conditions
  • Evaluate significance of difference (??)
  • No-effects model
  • Model allowing drift rate changes
  • Acceptance rate should criterion a

37
(No Transcript)
38
Future plans
  • Immediate future
  • Get DMAT out of beta-testing
  • Work out details regarding GML
  • Not-so-immediate future
  • Increase flexibility (e.g. nonrandom fluctuation
    in parameters)
  • Bayesian

39
Fin
  • Suggestions?
  • Comments?
  • Questions?
Write a Comment
User Comments (0)
About PowerShow.com