Linear Programming LP - PowerPoint PPT Presentation

1 / 12
About This Presentation
Title:

Linear Programming LP

Description:

x1 0 (-1)x1 0x2 0. x2 0 0x1 (-1)x2 0. x1 5 (-1)x1 0x2 5. x2 6 0x1 1x2 ... point of intersection of the objective with the hyperplane feasible polytope. ... – PowerPoint PPT presentation

Number of Views:23
Avg rating:3.0/5.0
Slides: 13
Provided by: Joh6538
Category:

less

Transcript and Presenter's Notes

Title: Linear Programming LP


1
Linear Programming (LP)
  • Vector Form
  • Maximize cx
  • Subject to Ax ? b
  • c (c1, c2, , cn)
  • x b
  • A
  • Summation Form
  • Maximize ?cixi
  • Subject to
  • ?a1ixi ? b1
  • ?a2ixi ? b2
  • .
  • .
  • ?amixi ? bm

x1 . . xn
b1 . . bn
a11 a1n an1 amn
2
Example LP
  • n 2 m 4
  • x1 x2 ? max
  • x1 ? 0 ? (-1)x1 0x2 ? 0
  • x2 ? 0 ? 0x1 (-1)x2 ? 0
  • x1 ? 5 ? (-1)x1 0x2 ? 5
  • x2 ? 6 ? 0x1 1x2 ? 6
  • c (1, 1) b
  • A
  • Optimal solution is the unique point of
    intersection of the objective with the hyperplane
    feasible polytope.
  • x2
  • optimal solution x1 5 x2 6
  • objective
  • x1 x2 11
  • x1

0 0 5 6
Feasible solution region
-1 0 0 -1 1 0 0 1
3
Integer Linear Programming (ILP)
  • Vector Form
  • Maximize cx
  • Subject to Ax ? b
  • and x ? 0,1
  • c (c1, c2, , cn)
  • x b
  • A
  • Summation Form
  • Maximize ?cixi
  • Subject to
  • ?a1ixi ? b1
  • ?a2ixi ? b2
  • .
  • .
  • ?amixi ? bm
  • and x ? 0,1

x1 . . xn
b1 . . bn
a11 a1n an1 amn
4
ILP for MIS
  • Maximum Independent Set (MIS)
  • - Find the maximum subset of nodes in graph G
    (V, E) which are pairwise non-adjacent
  • ILP
  • - For any v ? V make a variable xv ? 0, 1
  • xv 0 ? v ? MIS which means 0 is not
    chosen
  • xv 1 ? v ? MIS which means 1 is chosen
  • - Maximize ?v?V xv
  • Subject to ? e (u, v) ? V, xu xv
    ? 1

5
Example ILP of MIS
  • Max x1 x2 x3 x4 x5 x6
  • subject to x1 x6 ? 1 x1 x2 ? 1 x2
    x3 ? 1 x3 x6 ? 1 x3 x5 ? 1 x6 x5
    ? 1 x3 x4 ? 1 x4 x5 ? 1 and x1, x2,,
    x6 ? 0,1
  • Graph

1
2
3
6
4
5
6
ILP for MaxClique
  • ILP
  • - ?xi ? max
  • - Subject to
  • xi xj ? 1 ? (i, j) ? E
  • MaxClique
  • - Given G (V, E)
  • - Find
  • X ? V ? x, x ? X
  • (x, x) ? E
  • X ? max

7
ILP for Matching
  • Matching
  • - Given G (V, E)
  • - Find X ? E ? e, e ? X
  • e and e dont share endpoint.
  • X ? max
  • ILP
  • - for any e ? E xe ?0, 1
  • 0 is not in matching
  • 1 is in matching
  • - ?e?E xe ? max
  • - Subject to
  • ?e incident to V xe ? 1 ?v ? V
  • e2 xe1 xe2 xe3 ? 1
  • only one edge from
  • e1 e3 matching can be
  • incident to v

v
8
LP relaxation (LPR) vs. ILPLP relaxation (LPR)
for MAX independent set problem (MISP) gives
larger value than the maximum size of
independent set.
  • MISP
  • ?xi ? max, i ? V
  • xi xj ? 1, for each edge (xi,xj)? E
  • xi ?0, 1
  • LPR
  • ? xi ? max, i ? V
  • xi xj ? 1, for each edge (xi,xj)? E
  • 0 ? xi ? 1

9
Example 1 of ILP vs. LPR
  • ?xi ? max
  • x1 x6 ? 1
  • x1 x2 ? 1
  • x5 x6 ? 1
  • x5 x2 ? 1
  • x5 x4 ? 1
  • x4 x3 ? 1
  • x4 x2 ? 1
  • x2 x3 ? 1
  • ILP
  • x1 x3 x5 1
  • ?xi 3
  • LPR
  • xi ½
  • ?xi 3

3
4
2
1
5
6
10
MISP Integrality Gap
  • x1 x2 x3 ? max
  • x1 x2 ? 1
  • x1 x3 ? 1
  • x2 x3 ? 1
  • 0 ? x1 ? 1
  • 0 ? x2 ? 1
  • 0 ? x3 ? 1
  • LPR (?) ? 3/2
  • Implies LPR (?) 3/2
  • So x1 x2 x3 ½ ? LPR (?) ? 3/2
  • ILP (?) 1
  • Integrality Gap (IG) LPR / ILP 3/2
  • What is the integrality gap for (MISP)
  • For a complete graph
  • ILP (Kn) 1
  • LPR (Kn) n/2
  • Integrality Gap (IG) LPR / ILP
  • Integrality gap may be as large as n/2

2
3
1
11
LPR vs. ILP LP relaxation (LPR) for Minimum
Vertex Cover problem (MVCP) gives smaller value
than the minimum size of vertex cover
  • LPR
  • ? xi ? min , i ? V
  • xi xj ? 1, for each e (xi,xj)? E
  • 0 ? xi ? 1
  • MVCP
  • ?xi ? min, i ? V
  • xi xj ? 1, for each e (xi,xj)? E
  • xi ?0, 1

12
MVCP Integrality Gap
  • x1 x2 x3 ? min
  • x1 x2 ? 1
  • x1 x3 ? 1
  • x2 x3 ? 1
  • 0 ? x1 ? 1
  • 0 ? x2 ? 1
  • 0 ? x3 ? 1
  • LPR (?) ? 3/2
  • Implies LPR (?) 3/2
  • So x1 x2 x3 ½ ? LPR (?) ? 3/2
  • ILP (?) 2
  • Integrality Gap (IG) ILP / LPR 4/3
  • What is the integrality gap for (MVCP)
  • For a complete graph
  • ILP (Kn) n - 1
  • LPR (Kn) n/2
  • Integrality Gap (IG) ILP / LPR
  • Integrality gap may be as large as 2 (2 / n)
  • For more information
  • http//www-unix.mcs.anl.gov/otc/Guide/faq/linear-p
    rogramming-faq.html

2
1
3
Write a Comment
User Comments (0)
About PowerShow.com