Title: Simultaneous estimation
1Simultaneous estimation using the k-Nearest
Neighbors method
Ronald E. McRoberts Erkki O. Tomppo Andrew O.
Finley Juha Heikkinen
2Objective Derive variance estimators for
the k-Nearest Neighbor method Outline 1. A
brief introduction to the k-NN method 2. A few
superpopulation issues 3. Assumptions 4. Superpo
pulation estimators 5. Results
3Motivation ? FIA 1 plot per 6,000 acres
(2,400 ha) ? Plot data with perturbed locations
released to public - satisfactory for large
area analyses - unsatisfactory for small and
irregular areas ? Construct Internet-accessible
maps - multivariate - unbiased - provide
areal estimates with variance estimates
4FIA plot configuration
5FIA subplots relative to TM pixels
6The k Nearest Neighbors (k-NN) technique
7Implementing k-NN
For an arbitrary pixel, i
where yji j1,,k is the set of k pixels with
subplots nearest to pixel i in spectral space
with respect to a distance metric,
8(No Transcript)
9(No Transcript)
10(No Transcript)
11(No Transcript)
12(No Transcript)
13(No Transcript)
14Possibly correlated neighbors
15Possibly correlated neighbors
Same neighbor
16Superpopulation parameter estimates
17Superpopulation parameter estimates
18Areal estimates
19(No Transcript)
20Data ? 3 dates of Landsat TM/ETM
imagery ? 2266 FIA plots (9064
subplots) ? Match FIA subplots to Landsat
pixels ? 15 circles of radius 10-km ( 76,000
ac) ? 4 variables - proportion forest
area - volume (m3/hectare) - basal area
(m2/hectare) - tree count (count/hectare)
21Proportion forest
Volume
20 km
Basal area
Tree count
22Proportion forest area
23Volume (m3/ha)
24Basal area (m2/ha)
25Tree count (count/ha)
26AOI Design-based Model-based 1
nbr/plot cluster 1 nbr/plot
cluster n Mean SE Mean SE1 SE2 Mean SE1 SE2 Pro
portion forest area 5 20 0.963 0.021 0.907 0.0069
1 0.00696 0.904 0.00692 0.00695 8 24 0.812 0.050
0.810 0.00494 0.00504 0.813 0.00458 0.00469 13 24
0.615 0.075 0.643 0.00648 0.00661 0.639 0.00620 0
.00629 Volume 5 20 81.4 13.5 74.6 2.50 2.51 73.2
2.41 2.42 8 24 52.9 6.5 49.1 1.20 1.22 48.8 1.17
1.18 13 24 35.0 6.9 39.8 1.20 1.21 39.8 1.14 1.1
5 Tree count 5 20 313.8 38.3 382.6 10.50 10.55 3
77.2 9.84 9.88 8 24 322.4 49.6 253.8 5.15 5.21 25
3.2 4.99 5.05 13 24 187.2 32.6 188.7 5.11 5.16 18
7.9 5.04 5.08
27Conclusions ? Model-based approach yields maps
as by-products ? k-NN multivariate and
non-parametric ? Estimates comparable to
design-based approach ? From practical
perspective, k-NN areal variances are no larger
than sample-based variance estimates
28http//knn.gis.umn.edu/meeting/