Title: Detectors for BLISS
1Detectors for BLISS
- Jamie Bock (JPL)
- Kent Irwin (NIST)
- Erick Young (Steward/UA)
- with contributions from
- Rick LeDuc (JPL)
- Peter Day (JPL)
- Chao-Lin Kuo (JPL)
2- Bolometers
- Photoconductors
- New Technologies
3Sensitivity Requirements for FIR Spectroscopy
- Background at R 1000
- exceeds state-of-the art NEP
-
- FIR spectrometers are large
- Extreme stray-light sensitivity
4 K instrument AW 3 mm2, Dl/l 50 , e 10
4Bolometers Principle of Operation
Infrared radiation
Fundamental noise limit NEP (4kT2G)1/2
T0
Speed of response t f(a) (C/G)
Heat sink
T
NEP2photon gt NEP2phonon NEP2Johnson NEP2amp
Thermal link G(T)
Transition-Edge Superconducting (TES) Bolometers
Electro-Thermal Feedback a dln(R)/dln(T)
1000 vs. 5 for NTD Ge Linear Response P Q
k ?TcTo G(T)dT P electrical power Q
optical power Response speed-up f(a) ? (1/a)
10-2 Saturation max(Q) ?TcTo G(T)dT
fsQ0 Sensitivity NEPbolo (8kT0fsQ0)1/2
scales with fs1/2 ( weakly with b) NEPphoton
(2hnQ0)1/2
5Tradeoffs with Bolometers
Advantages Wavelength coverage High quantum
efficiency (typically gt 85 QE) Well
understood noise no photometric funnies
NEP ? 1e-19 W/?Hz possible (1e-18 W/?Hz
demonstrated) SQUID multiplexing
Demonstrations of SQUIDs, NTD Ge bolometers
mature
- Disadvantages
- - Low operating temperature
- (50 100 mK for BLISS)
- - Systems issues
- (EMI, B-fields, T stability, stray light)
- Dynamic range trades with sensitivity
- (this is not a strong constraint)
- - Low technology readiness of ultra-low
- background TES SQUID readout,
- plus an active cooler at system level
6Spider Web Si3N4 NTD Ge Bolometer Arrays
- Characteristics
- Far-IR to mm-wave 30 mm lt l lt 3 mm
- High sensitivity NEP ? 1.5e-18
- Excellent noise stability 1/f lt 30 mHz
- High optical efficiency h ? 85
- 100s of detectors (SPIRE)
330 - Low temperature T ? 300 mK
Electrical Lead
Support Leg
Absorber
NTD Germanium
7SPIRE Bolometer Detector Arrays (1)
Feedhorn array
IR filter
300 mK attach
Kevlar suspension
2 K flange
Detector array (not visible)
Kapton Cu/Ni cables
Output connector
Exploded view
8SPIRE Bolometer Detector Arrays (2)
300 mK assembly
Focal plane assembly
Kevlar suspension
9SPIRE Bolometer Detector Arrays (3)
Focal Plane Array (l250 mm, 144-Elements, 99
yield)
10Bolometer Array Performance Summary
Perfect bolometer is ideal model _at_ 81
end-to-end yield, goal/guidelines are demanding
11Low-Power JFET Readouts
- Differential source-follower readout
- Si3N4 isolation ? JFETs operate at T 130 K
- lt 7 nV/?Hz noise at lt 200 mW per channel
- Dissipation dominated by Si3N4 conductance
- Perforated membranes show 2x lower G
- Can be placed on 20 K stage
Developed for Herschel/SPIRE at JPL
JFET Module
30-Channel Membrane
12Ultra-Low NEP TES Bolometers (1)
FT Spectroscopy
G T2.78
Dispersive Spectroscopy
G T1.24
Phonon limited NEP2x10-20W Hz-1/2 _at_20mK !!!
Data P.Day, Fabrication R.LeDuc, T. Jun
13Ultra-Low NEP TES Bolometers (2)
Lower G under development How does G may
scale? maybe as exp(-l)!
Data P.Day, Fabrication R.LeDuc, T. Jun
14Testing of MoAu TES Films
1 square
1/2 square
1/5 square
o, o, o bias point
---, ---, --- Phonon-limited NEP
- Need low-impedance recipe for 100 mK 300 mK
- Need to understand noise behavior
15(No Transcript)
16(No Transcript)
17(No Transcript)
18(No Transcript)
19(No Transcript)
20Noise Testing with SQUID MUX
Results from First integration
muxed
muxed differenced
Systematic Study of Mux Noise
unmuxed
TES Bolometer
21(No Transcript)
222 x 5120-element arrays
23- Bolometers
- Photoconductors
- New Technologies
24(No Transcript)
25(No Transcript)
26(No Transcript)
27(No Transcript)
28(No Transcript)
29(No Transcript)
30(No Transcript)
31(No Transcript)
32(No Transcript)
33(No Transcript)
34(No Transcript)
35(No Transcript)
36- Bolometers
- Photoconductors
- New Technologies
37(No Transcript)
38(No Transcript)
39Kinetic Inductance Detectors
- Bandgap detector
- Elegantly multiplexed readout
- uses room-temperature GHz electronics!
Peter Day, Rick LeDuc / JPL Jonas Zmuidzinas /
Caltech
40(No Transcript)
41Conclusions
- TES Bolometers
- NEP e-18 W/?Hz demonstrated
- NEP e-19 W/?Hz within reach at 50 mK
- NEP e-20 W/?Hz requires lower G
- Covers the whole wavelength range
- High QE, excellent photometric behavior
- SQUID multiplexing
- Systems Issues
- Photoconductors
- MIPS 32 x 32, NEP 1e-18 W/Hz
- AsSi SbSi arrays working well on Spitzer
- Implementation easier than bolometers
- Lower NEP? Requires lower amplifier noise
- Cannot cover long wavelengths
- Do we use more than one detector technology?
- New technologies - depends on SPICA schedule
- GaAs, Ge IBC, KIDS, NIS Coolers
42Spectral Transmission of Silicon
No measureable loss in silicon Room temperature
sample, 1cm thick
Data courtesy of Peter Ade, U. Cardiff
43Sensitivity Trade with Dynamic Range
NEP2tot NEP2photon NEP2bolo NEPbolo
(8kT0fsQ0)1/2 NEPphoton (2hnQ0)1/2
An Example Qsat/Q0 fs G0 selectable b
2 T0 100 mK Tc/T0 2 No amplifier noise
NEPbolo NEPphoton
Generally not too bad! More of an issue at long
l Lower T helps
44(No Transcript)
45(No Transcript)