Linear Temporal Logic - PowerPoint PPT Presentation

1 / 29
About This Presentation
Title:

Linear Temporal Logic

Description:

Linear Temporal Logic. Seminar The Time Machine. Supervisor Klaus Dr ger ... Path quantifiers: A for all paths. E for some paths. Examples: ... – PowerPoint PPT presentation

Number of Views:93
Avg rating:3.0/5.0
Slides: 30
Provided by: rox64
Category:

less

Transcript and Presenter's Notes

Title: Linear Temporal Logic


1
Linear Temporal Logic
Roxana Ragneala, roxana.ragneala_at_gmail.com
Seminar The Time Machine Supervisor Klaus Dräger
2
History of Temporal Logic
Philosophers
Arthur Prior
Amir Pnueli
Specification of concurrent systems
3
Framework
  • Temporal Logic is a class of Modal Logic
  • Allows qualitatively describing and reasoning
    about changes of the truth values over time
  • Usually implicit time representation
  • Provides variety of temporal operators
    (sometimes, always)
  • Different views of time (branching vs. linear,
    discrete vs. continuous, past vs. future, etc.)

4
Branching vs. Linear Time
Linear - only one possible future in a moment
Branching - may split to different courses
depending on possible futures
5
LTL
  • In LTL time is
  • implicit,
  • discrete,
  • infinite in the future and
  • has an initial moment with no predecessors
  • A model of LTL formula is an infinite sequence of
    states p s0, s1, s2,

6
LTL
  • Elements
  • Atomic propositions AP
  • Boolean operators ? ? ?
  • Temporal operators G F X U R
  • Syntax
  • F P
  • F ? ? ? ? ? ? F ? F
  • G F F F X F ? U ? ? R ?

7
Semantic Intuition
  • G f always f
  • F f eventually f
  • X f next state
  • f U r until
  • f R r releases

8
Examples
p,q p,q p,q p,q p,q p,q
p ? q X(p ? q)
True
G p
False
9
More Examples
G(p -gtXq) G(p -gt X(q U r)) GF p p R q
10
Semantic
  • Semantic is given with respect to path
  • p s0 s1 s2
  • Suffix of the path starting at si
  • pi si si1 si2
  • A system satisfies an LTL formula f if each path
    through the system satisfies f.

11
Semantic
  • p ? iff ? ? L(s0)
  • p ?? iff not p ?
  • p ? ? ? iff p ? and p ?
  • p ? ? ? iff p ? or p ?
  • p X ? iff p1 ?
  • p F ? iff exists i ? 0 pi ?
  • p G ? iff for all i ? 0 pi ?
  • p ? U ? iff exists i ? 0 pi ?
  • and for all 0 ? j lt i pj ?

12
From LTL to Automata
Automaton for Fp
,p
p
s0
s1
13
LTL to Büchi Automata
  • First, we bring the LTL formulas in a normal form
  • Rules
  • p ? q ?p ? q
  • p ? q (?p ? q) ? (?q ? p)
  • ?(p ? q) ?p ? ?q
  • ?(p ? q) ?p ? ?q
  • ??p p
  • ?(p U q) ?p R ?q
  • ?(p R q) ?p U ?q
  • F p true U p
  • G p false R p
  • ? X p X ?p

GF p ? F r 8,9 (false R (Fp)) ? (true U p) 8
(false R (true U p)) ?(true U p) 1
?(false R (true U p)) ? (true U p) 7 (true U
?(true U p)) ? (true U p) 6
(true U (false R ?p)) ? (true U p)
14
Büchi Automata
  • Automaton A (S,S,d,I,F)
  • S finite alphabet
  • S set of states
  • d transition relation
  • I set of initial states
  • F set of acceptance states
  • A run p of A on ? word a
  • p q0,q1,q2,, such that q0 ? I and (qi,ai,qi1)
    ? d
  • The run p is accepting if
  • Inf(p)nF ?

15
LTL to Büchi Automata A?
  • S sets of subformulas of ?
  • e.g ?p1U?p2, a state is given by s p1,?p2,
    p1U?p2
  • Consider a word ss0,s1,s2 such that s ?
    where,
  • e.g.,? ?1 U ?2
  • Mark each position i with the subset of formulas
    si of ?
  • that hold true there (s0, s1, - s0,s1,)
  • Clearly, ? ?s0. But then, by consistency either
  • ?1 ?s0 and ? ?s1 or
  • ?2 ?s0

16
LTL to Büchi Automata A?
sub(?) sets of subformulas of ? A?(Q, S, R, L,
Init, F) Qs sub(?) s.t. s is locally
consistent For s to be locally consistent we
should e.g. have
  • false s
  • if ?1 ? ?2 ? s then ?1 ? s and ?2 ? s
  • if ?1 ? ?2 ? s then ?1 ? s or ?2 ? s
  • if pi ? s then ?pi s and if ?pi ? s then pi
    s
  • if ?1 U ?2 ? s then ?1 ? s or ?2 ? s

17
LTL to Büchi Automata A?
L Q? S We want a word ss0,s1,s2 to be in
L(A?) iff there is a run ps0,s1,such that
i?N, we have that si satisfies L(si)
18
Temporal Operators
  • p U q (q ? (p ? X(p U q)))
  • Note q has to be true at some point!
  • p R q (q ? (p ? X(p R q)))

19
LTL to Büchi Automata A?
LQ? S We want a word ss0,s1,s2 to be in L(A?)
iff there is a a run ps0,s1,such that
i?N, we have that si satisfies L(si) R
Q x Q where (s,s) ? R iff
  • if ?1 U ?2 ? s then ?2 ? s or (?1 ? s and (?1 U
    ?2) ? s)
  • if ?1 R ?2 ? s then ?2 ? s and (?1 ? s or (?1 R
    ?2) ? s)
  • If X? ? s then ? ? s

20
LTL to Büchi Automata A?
Init s ? Q ? ? s F for each ?1U?2 ?
sub(?) there is a set Fi ? F such that Fis ?
Q if ?1U?2 ?s then ?2 ?s Lemma L(?)L(A?)
21
Example Fp
true U p p
true U p
p
  • F p true U p
  • Init s ? sub(true U p) (true U p) ? s

22
Example Fp
true U p p
true U p
p
  • true U p p ? X (true U p)

23
Example Fp
true U p p
true U p
p
  • true U p p ? X (true U p)

24
Example Fp
true U p p
true U p
p
  • true U p p ? X (true U p)

25
Example Fp
true U p p
true U p
p
  • true U p p ? X (true U p)

26
Example Fp
true U p p
true U p
p
  • F Ftrue U ps ? sub(true U p) if (true U
    p) ?s then p ?s

27
Branching Time
  • Path quantifiers
  • A for all paths
  • E for some paths
  • Examples
  • CTL AGp, EFp, AGEXp, A(GFp), E(GFp)
  • CTL AGp, EFp, AGEXp, EGEFP

28
Comparison
  • Different views of time branching with linear
  • Incomparable expressive power
  • FGp is not expressible in CTL
  • AGEFp is not expressible in LTL
  • Performance
  • CTL run in time O(Pxf)
  • LTL run in time O(Px2O(f)) and space
    O((flog(P))2)
  • CTL characterizes bisimulation
  • CTL is more used in industry

29
(No Transcript)
Write a Comment
User Comments (0)
About PowerShow.com