Title: ADVANCES IN MATERIAL TESTING FOR LONG LIFE ASPHALT PAVEMENTS
1ADVANCES IN MATERIAL TESTING FOR LONG LIFE
ASPHALT PAVEMENTS
- Samuel H. Carpenter
- University of Illinois Urbana-Champaign
- Rhode Island Transportation Forum
- November 5, 2004
2NCHRP 1-37A
- AASHTO 2002 Design Guide - Driving Research
- Performance Models
- Verification
- Calibration
- New Material Testing
- Dynamic Modulus
- Fatigue
3TESTING
- Stiffness Dynamic Modulus
- Temperature
- Rate of Loading
- Key Element in Structural Thickness Design
- Seasonal Variations
- Regional Variations
- Fatigue Gradual Failure Under Repeated Loadings
4ASPHALT PAVEMENT FATIGUE
5Full Depth Asphalt
Subgrade
6STRUCTURAL DESIGN FOR FATIGUE
- Reduce Bending Reduce Strain
- Increase Thickness of Asphalt Layer
- Increase Stiffness of Asphalt Layer
- Improve Material Behavior
7DYNAMIC MODULUS
8SAMPLE PREPARATION
9SAMPLE PREPARATION
10(No Transcript)
11ILLINIOS DOT TESTING
- 21 Mixtures Sampled From Field Construction
Projects - Specimens Compacted, Prepared, and Tested at 4
and 7 Percent Air Voids - Develop Typical Values Examine Models
12DYNAMIC MODULUS - STIFFNESS
13FATIGUE DESIGN
- Tensile Strain at Bottom of Asphalt
- Tensile Strain in Flexural Beam Test
- Other Configurations
14FATIGUE TESTING
- Tensile Strain in Flexural Beam Test
- Other Configurations
- 10 Hz Haversine Load, 20o C, Controlled Strain
15FLEXURAL FATIGUE TEST
16SAMPLE PREPARATION
17FLEXURAL FATIGUE TEST
18MODULUS DECREASE - DAMAGE
19IDOT MIX - TYPICAL FATIGUE
20FATIGUE COEFFICIENTS
y -0.3269x 1.1879 R2 0.9354
21INDIRECT TENSILE STRENGTH
22FATGUE IN THICKNESS DESIGN
0.01
Unique Curve for Every Mixture
0.001
Strain (Strain/1E6)
0.0001
Thicker HMA
0.00001
1.0E02
1.0E04
1.0E06
1.0E08
1.0E10
1.0E12
1.0E14
Load Cycles to 50 Stiffness (Failure)
23Perpetual Pavement ?
0.01
0.001
Strain (Strain/1E6)
0.0001
0.00001
1.0E02
1.0E04
1.0E06
1.0E08
1.0E10
1.0E12
1.0E14
Load Cycles to 50 Stiffness (Failure)
24FATIGUE ENDURANCE LIMIT
0.01
0.001
Strain (Strain/1E6)
0.0001
FATIGUE ENDURANCE LIMIT
0.00001
1.0E02
1.0E04
1.0E06
1.0E08
1.0E10
1.0E12
1.0E14
Load Cycles to 50 Stiffness (Failure)
25DISSIPATED ENERGY
INITIAL LOAD CYCLE
STRESS
STRAIN
26DISSIPATED ENERGY
- Dissipated Energy Ratio - Damage
INITIAL LOAD CYCLE
STRESS
SECOND LOAD CYCLE
STRAIN
DIFFERENT DISSIPATED ENERGY BETWEEN FIRST AND
SECOND LOAD CYCLE
2770 MICRO STRAIN TEST
Projected Life 1 E13
2870 MICRO STRAIN
Plateau Value
29UNIQUE FATIGUE LIFE PLOT
30PLATEAU VALUE LOAD CYCLES
31FATIGUE
- 60 Different Mixtures Tested to Date
- FAA Project Damage Approach Energy Based
- 11 Illinois Mixtures Sampled for IDOT Project
22 Mixtures Tested - Neat Binders
- Polymer Modified
- Rich Bottom Base Mixtures
32LOW STRAIN TESTING
33FATIGUE ENDURANCE LIMIT
34LABORATORY FIELD SHIFT
- Field Life is 4 to 50 Times Longer Than the
Laboratory Fatigue Test Predictions - Illinois DOT Test Sections
- Response to wheel loads
- ATLaS
- FWD, HWD
- Field fatigue comparison to lab
35PERPETUAL PAVEMENT SECTIONS
36IN-SITU STRAIN GAGES
37ATLaS FULL SCALE TESTER
38RECORDED TENSILE STRAINS
39DISSIPATED ENERGY APPROACH
- Laboratory Testing to Demonstrate Field Shift
Factor - HEALING
- Add a Rest Period Between Each Individual Load
Cycle - Not after a set number of cycles
40LABORATORY HEALING
5 Second Rest 10x Life Increase
41PLATEAU VALUE LOAD CYCLES
42DISSIPATED ENERGY
- Validates Fatigue Endurance Limit
- Provides Mechanistic Damage-Based Fatigue
Analysis - Is a Fundamental Material Property
- Allows Study of Healing in Pavement
43FATIGUE ENDURANCE LIMIT
- Crucial for Perpetual Pavements
- Limit to HMA Thickness
- Unique fatigue curves
- Independent of Traffic Level
- Crucial structural design element
- Questions necessity of rich bottom layer