Multiclass Classification - PowerPoint PPT Presentation

1 / 12
About This Presentation
Title:

Multiclass Classification

Description:

Multilabel Classification has l labels per example. Page 11. Category Ranking (1) John 1 3 1. Bob 4 1 4. Scott 5 2 ? Natural order: (bad) 1 2 3 4 5 (good) ... – PowerPoint PPT presentation

Number of Views:50
Avg rating:3.0/5.0
Slides: 13
Provided by: danr168
Category:

less

Transcript and Presenter's Notes

Title: Multiclass Classification


1
Multiclass Classification
  • Sariel Har-Peled, Dan Roth, Dav Zimak
  • Department of Computer Science
  • University of Illinois at Urbana-Champaign

2
Multiclass Classification in NLP
  • Name/Entity Recognition
  • Label people, locations, and organizations in a
    sentence
  • PER Sam Houston,born in LOC Virginia, was
    a member of the ORG US Congress.
  • Decompose into sub-problems
  • Sam Houston, born in Virginia... ?
    (PER,LOC,ORG,?) ? PER (1)
  • Sam Houston, born in Virginia... ?
    (PER,LOC,ORG,?) ? None (0)
  • Sam Houston, born in Virginia... ?
    (PER,LOC,ORG,?) ? LOC (2)
  • Many problems in NLP are decomposed this way
  • Disambiguation tasks
  • POS Tagging
  • Word-sense disambiguation
  • Verb Classification
  • Semantic-Role Labeling

3
Transform the sub-problems
  • Sam Houston, born in Virginia... ?
    (PER,LOC,ORG,?) ? PER (1)
  • Transform each problem to feature vector
  • Sam Houston, born in Virginia
  • ? (Bob-, JOHN-, SAM HOUSTON, HAPPY, -BORN,
    --BORN,... )
  • ? ( 0 , 0 , 1
    , 0 , 1 , 1 ,... )
  • Transform each label to a class label
  • PER ? 1
  • LOC ? 2
  • ORG ? 3
  • ? ? 0
  • Input 0,1d or Rd
  • Output 0,1,2,3,...,k

4
Solving multiclass with binary learning
  • Multiclass classifier
  • Function f Rd ? 1,2,3,...,k
  • Decompose into binary problems
  • Not always possible to learn
  • No theoretical justification (unless the problem
    is easy)

5
What we solve
  • General framework
  • Extend binary algorithms
  • Theoretically justified
  • Provably correct
  • Generalizes well
  • Verified Experimentally
  • Naturally extends binary classification
    algorithms to mulitclass setting
  • e.g. Linear binary separation induces linear
    boundaries in multiclass setting

6
Constraint Classification
  • Examples (x,y)
  • y ? Sk
  • Sk partial order over class labels 1,...,k
  • defines preference relation (lt) for class
    labels
  • e.g. Multiclass 2lt1, 2lt3, 2lt4, 2lt5
  • e.g. Multilabel 1lt3, 1lt4, 1lt5, 2lt3, 2lt4, 4lt5
  • Constraint Classifier
  • f X ? Sk
  • f(x) is a partial order
  • f(x) is consistent with y if (iltj) ? y ? (iltj)
    ?f(x)

7
Margin Generalization Bounds
  • Linear Hypothesis space
  • h(x) argsort vi.x
  • vi, x ?Rd
  • argsort returns permutation of 1,...,k
  • CC margin-based bound
  • ? min(x,y)?S min (i lt j)?y vi.x vj.x
  • m - number of examples
  • R - maxx x
  • ? - confidence
  • C - average constraints

8
VC-style Generalization Bounds
  • Linear Hypothesis space
  • h(x) argsort vi.x
  • vi, x ?Rd
  • argsort returns permutation of 1,...,k
  • CC VC-based bound
  • m - number of examples
  • d - dimension of input space
  • delta - confidence
  • k - number of classes

9
Constraint Classification for NLP
  • Represent relationship among output classes
  • PER gt LOC, PER gt ORG ? Multiclass label PER
  • Learn the relationship
  • Multiclass
  • Can robustly learn hypothesis space
  • Provablly!
  • Empircally!

10
Multilabel and Ranking Classification
  • Woman
  • Golfer
  • Person
  • Player

Multilabel Classification has l labels per example
11
Category Ranking (1)
  • John 1 3 1
  • Bob 4 1 4
  • Scott 5 2 ?
  • Natural order (bad) 1 ? 2 ? 3 ? 4 ? 5 (good)
  • Multiclass/multilabel problem with a ranking over
    the classes.

5gt4gt3gt2gt1
12
The End
Write a Comment
User Comments (0)
About PowerShow.com