Title: Computer Architecture and Number Systems
1Computer Architecture and Number Systems
- Topics
- What is Computer?
- Major Computer Components
- Computer Components Interconnection
- Data Representation
- Bits, Bytes, and Words
- The Decimal Number System
- The Binary Number System
- Converting from Binary to Decimal, Decimal to
Binary - The Hexadecimal Number System
- Converting from Hexadecimal to Decimal, Decimal
to Hexadecimal
2What is Computer?
- A data processing machine capable of performing
computations and making logical decisions very
fast. - Consists of hardware such as keyboard, screen,
mouse, disks, memory, CD-ROM, and processing
units. - A program (software) is a set of instructions
written in a computer language that runs on a
computer.
3Major Computer Components
- Memory Unit (Main Memory, Secondary Storage Unit)
- Arithmetic and Logic Unit (ALU), Central
Processing Unit (CPU) - Input/Output (I/O) Unit
4Memory Unit
- Memory unit stores information such as computer
programs, data, or documents. - Two types of memory devices
- Primary Storage or Main Memory
- Secondary Storage
5Memory Unit (cont)
- Main memory is fast and expensive .
- Stores frequently accessed information such as
programs and data during their execution. - Is volatile storage. That is, if power is lost,
the information in main memory is lost. - Secondary storage is slower and cheaper.
- Disks (floppy, hard, removable), Tapes, CDs,
DVDs. - Is non-volatile, that is persistent (permanent)
storage.
6Memory Unit (cont)
- Main memory consists of a collections of storage
locations. - Data are read from or written to memory in cells.
A cell can be 8 64 bits. - Address is used to uniquely identify a cell
location. - Cells may be grouped into words. E.g., four 8-bit
cells forms one word.
7Memory Unit (cont)
- Memory Access Methods
- Sequential access memory
- Read memory address one after another, e.g. tape.
- Random-access memory (RAM)
- Any location can be read by specifying its
address, e.g. main memory, disks, CDs, DVDs.
8Input/Output (I/O) Unit
- Input/Output Unit
- Input unit accepts input data and programs from
an input device. - Output unit sends the results of processing
(output) to an output device. - More generally, these devices are known as
peripheral devices. - Input device - keyboard, mouse, scanner
- Output device - monitor, printer
- I/O device - disk drive (floppy, hard,
removable), CD or DVD drive
9ALU, CPU
- ALU performs calculations (such as addition,
subtraction, multiplication, division) and
logical operations (e.g. comparing two numbers). - CPU is the brain of the computer.
- Controls operations of other components, memory,
ALU, I/O. - Tells input unit when info is ready to be read
into the memory unit. - Tells output unit when to send info from the
memory unit to an output device.
10Computer Components Interconnection
- CPU and memory are connected by a bus.
- Connecting I/O devices
- I/O devices are slower than CPU/memory.
- Cant connect directly to Bus. Need an I/O
controller or interface to handle the differences
in speed between the I/O device and the bus. - A bus is a group of parallel wires that carry
control signals and data between CPU and memory.
11Computer Components Interconnection
- Three types of Bus -
- Data Bus
- Address Bus
- Control Bus
- Data bus consists of many wires. Each wire
carries 1 bit at a time. The of wires (bits)
needed size of a word. If the word is 32 bits
in a computer, then we need 32-bit data bus.
12Computer Components Interconnection
- Address bus allows access to a particular word in
a memory. The number of wires log2(total number
of memory words). If the memory has 2n words,
address bus needs to carry n bits at a time. - Control bus carries communication signals between
CPU and memory. The number of bits used
log2(total number of control commands).
13Data Representation
- Data types
- Text
- Number
- Image
- Audio
- Video
14Bits, Bytes, and Words
- A bit is a single binary digit (a 1 or 0).
- A byte is 8 bits
- A word is 32 bits (that is, 4 bytes)
- Long word 8 bytes 64 bits
- Quad word 16 bytes 128 bits
- Programming languages use these standard number
of bits when organizing data storage and access. - What do you call 4 bits? (hint it is a small
byte)
15Number Systems
- The data in memory is represented in terms of 1s
and 0s. - Therefore, thinking about how information is
stored in RAM requires knowledge of the binary
(base 2) number system. - Lets review the decimal (base 10) number system
first.
16The Decimal Number System
- The decimal number system is a positional number
system. - Example
- 1 2 6 5 5 X 100 5
- 103 102 101 100 6 X 101 60
- 2 X 102 200
- 1 X 103 1000
17The Decimal Number System (cont)
- The decimal number system is also known as base
10. The values of the positions are calculated
by taking 10 raised to some power. - Why is the base 10 for decimal numbers?
- Because we use 10 digits, the digits 0 through 9.
18The Binary Number System
- The binary number system is also known as base 2.
The values of the positions are calculated by
taking 2 to some power. - Why is the base 2 for binary numbers?
- Because we use 2 digits, the digits 0 and 1.
19The Binary Number System (cont)
- The binary number system is also a positional
numbering system. - Instead of using ten digits, 0 - 9, the binary
system uses only two digits, 0 and 1. - Example of a binary number and the values of the
positions - 1 0 0 1 1 0 1
- 26 25 24 23 22 21
20
20Converting from Binary to Decimal
- 1 0 0 1 0 0 1 1 X 20 1
- 26 25 24 23 22 21 20 0 X 21 0
- 0 X 22 0
- 20 1 24 16 1 X 23 8
- 21 2 25 32 0 X 24 0
- 22 4 26 64 0 X 25 0
- 23 8 1 X 26 64 7310
21Converting from Binary to Decimal (cont)
- Practice conversions
- Binary Decimal
- 101
- 1101
- 101101
22Converting From Decimal to Binary (cont)
- Perform successive divisions by 2, placing the
remainder (0 or 1) in each of the positions from
right to left. - Continue until the quotient is zero.
- Example 4410
- 44 / 2 22 rem 0
- 22 / 2 11 rem 0
- 11 / 2 5 rem 1
- 5 / 2 2 rem 1
- 2 / 2 1 rem 0
- 1 / 2 0 rem 1
- Done answer 1 0 1 1 0 0 2
23Converting From Decimal to Binary (cont)
- Practice conversions
- Decimal Binary
- 59
- 82
- 175
24Working with Large Numbers
- 1 1 0 1 0 0 0 0 1 0 1 0 0 1 1 0 ?
- Humans dont work well with binary numbers there
are too many digits to deal with. - Memory addresses and other data can be quite
large. Therefore, we sometimes use the
hexadecimal number system.
25The Hexadecimal Number System
- The hexadecimal (hex) number system is also known
as base 16. The values of the positions are
calculated by taking 16 to some power. - Why is the base 16 for hexadecimal numbers ?
- Because we use 16 symbols, the digits 0 and 1 and
the letters A through F.
26The Hexadecimal Number System (cont)
- Example of a hexadecimal number and the values of
the positions - 3 C 8 B 0 5 1
- 166 165 164 163 162 161 160
27The Hexadecimal Number System (cont)
- Binary Decimal Hexadecimal Binary
Decimal Hexadecimal - 0 0 0
1010 10 A - 1 1 1
1011 11 B - 10 2 2
1100 12 C - 11 3 3
1101 13 D - 100 4 4
1110 14 E - 101 5 5
1111 15 F - 110 6 6
- 111 7 7
- 1000 8 8
- 1001 9 9
-
28Converting From Hexadecimal to Decimal
- Example Convert 1A5F16 to decimal.
- 1 A 5 F
- 163 162 161 160
- 4096 256 16 1
- Recall A16 1010 and F16 1510.
- 1 x 4096 A x 256 5 x 16 F x 1
- 1 x 4096 10 x 256 5 x 16 15 x 1
- 4096 2560 80 15
- 675110
29Converting From Decimal to Hexadeciaml
- Perform successive divisions by 16, placing the
remainder (0-9, A-F) in each of the positions
from right to left. - Continue until the quotient is zero.
- Example Convert 14310 to hex.
- 143 / 16 8 rem 1510 F16
- 8 / 16 0 rem 8
- Done answer 8F16
- To Check 8 x 16 15 128 15 14310
-
30Example of Equivalent Numbers
- Binary 1 0 1 0 0 0 0 1 0 1 0 0 1 1 12
- Decimal 2064710
- Hexadecimal 50A716
- Notice that the number of digits needed is
smaller as the base increases.
31Next Class
- Operating System and Using Linux.
- Homework 1 due beginning of class on September 9.