Perspectives for Heavy Flavour Physics in the ALICE detector - PowerPoint PPT Presentation

1 / 30
About This Presentation
Title:

Perspectives for Heavy Flavour Physics in the ALICE detector

Description:

In black under study. Geneva July 19th 2006. CERN Heavy Ion Forum. 10. D0 Kp channel ... Beauty J/Y can be studied via di-electrons; ... – PowerPoint PPT presentation

Number of Views:51
Avg rating:3.0/5.0
Slides: 31
Provided by: mart340
Category:

less

Transcript and Presenter's Notes

Title: Perspectives for Heavy Flavour Physics in the ALICE detector


1
Perspectives for Heavy Flavour Physics in the
ALICE detector
  • CERN Heavy Ion Forum
  • Ginés MARTINEZ GARCIA, Subatech
  • for the ALICE collaboration
  • Geneva, July 19th 2006

2
Physics Motivations
  • Dissociation and regeneration of quarkonia in hot
    QGP.
  • Brownian motion and coalescence of low pT HQ in
    the quark gluon plasma (QGP).
  • Energy loss of Heavy Quarks (HQ) in hot and high
    density medium formed in AA central collisions.
  • Heavy flavour physics in pp collisions Quarkonia
    production mechanism, small x physics, gluon
    shadowing.

3
Heavy Quarks in AA coll.
  • Small xBj (10-3 10-5)
  • DtQ 0.04 0.15 fm/c
  • DtQ ltlt tQGP ltlt tQ
  • Shadowing / Saturation
  • HQ energy loss in QGP
  • HQ coalescence (low pT)
  • Reference for Quarkonia

L.O.
4
Charmonia spectroscopy
J/Y?mm-, ee- (BR 5.9)
y(2S) or y'
pp _at_ 14 TeV sJ/y 70 mb
1 J/y per 1000 pp collisions
27 from cc decay 22 from B decay 5.6 from y(2S)
y(2S) ? mm-, ee-(BR0.8)
60 direct y(2S) 39 from B decay
????
J/y
y(2S) / J/Y direct 1.7
y(2S) / J/y from B 5.2
????
5
Charmonia in AA collisions
SPS
RHIC
LHC
J/Y regeneration
J/Y melting
H. Satz, CERN Heavy Ion Forum, 09/06/05
  • Melting of Y and c at SPS and RHIC, and melting
    of J/Y at LHC?
  • Magic cancellation between J/Y suppression and
    J/Y regeneration?

22 (39) of J/Y (Y) from open beauty meson
decays.
6
Bottomonia spectroscopy
?(1S)? mm-, ee- (BR 2.4)
pp _at_ 14 TeV s?(1S) 0.77 mb
1 ?(1S) per 105 pp collisions
?(3S)
29.0 from cb(1P) decay 9.5 from ?(2S) decay
4.5 from cb(2P) decay 1.5 from ?(3S) decay
?(2S)
?(2S)? mm-, ee- (BR 1.3)
25.0 from cb(2P) decay 4.5 from ?(3S) decay
?(3S)? mm-, ee- (BR 1.8)
?(1S)
????
Dm(3S-2S) 332 MeV/c2
7
Bottomonia in AA collisions
CUSB Detector(Cornell)
  • First measurement of Bottomonia.
  • Regeneration is expected to be small at LHC.
  • ?(2S) behaves as J/y TD?(2S) TDJ/y
  • ?(1S) melts only at LHC.
  • ?(2S)/?(1S) as a function of pT.

Dm(3S-2S) 332 MeV/c2
45 (30) of feed-down from higher resonances for
?(1S) (?(2S))
8
ALICE capabilities for HQ
  • ALICE combines electronic, muonic and hadronic
    channels
  • ALICE covers down to pT 0 for quarkonia and
    open charm
  • ALICE covers central (hlt0.9) and forward
    (2.5lthlt4.0) regions
  • High precision vertexing in the central barrel

Muon Spectrometer -4.lthlt-2.5
9
Physics Analysis
  • Hadronic decays
  • D0?K p, D-?K p p, Ds?K K, Ds?f p,
  • Leptonic decays
  • B? l (e or m) anything.
  • Invariant mass analysis of lepton pairs BB, DD,
    BDsame, J/Y, Y, ? family, B ?J/Y anything.
  • BB ?m m m (J/Y m).
  • e-m correlations.
  • W- ? l- n, Z0?ll-.

In red channels studied in the ALICE PPR Vol.2
(to be published in J.Phys. G) In black under
study
10
D0?Kp channel
  • High precision vertexing, better than 100 mm
    (ITS)
  • High precision tracking (ITSTPC)
  • K and/or p identification (TOF)

109 pp 108 pPb 107 PbPb
107 central PbPb
D ?Kp
11
High Precision charm measurement
Central PbPb Shadowing kT energy loss
pp at 14 TeV Sensitivity to PDFs
Shadowing region
12
Open Beauty from single electrons
  • Electron Identification (TRDTPC)
  • High precision vertexing (ITS)
  • Subtraction of the open charm contribution.

107 central PbPb
13
mm- correlations
Single Muons
BDsame
BB
5 central PbPb
14
Energy loss physics
Charm Production Quark versus gluon Energy
Loss Higher gluon coupling
Beauty production Mass dependence of Energy
Loss Dead cone effect
15
Quarkonia ? ee-
PbPb central 10
Electron Identification (TRD)
sJ/Y 35 MeV s? 80 MeV dNch/dy 3000
16
Quarkonia ? mm-
PbPb cent, 0 fmltblt3 fm
Yields for baseline
  • ?(1S) ?(2S) 0-8 GeV/c
  • J/Y high statistics 0-20 GeV/c
  • Y poor significance
  • ? ok, but 2-3 run will be needed.

sJ/Y 65 MeV s? 100 MeV dNch/dy 6000
17
Suppression scenario
  • Suppression-1
  • Tc 270 MeV
  • TD/Tc1.7 for J/Y
  • TD/Tc 4.0 for ?.
  • Suppression-2
  • Tc190 MeV
  • TD/Tc1.21 for J/Y
  • TD/Tc 2.9 for ?.

PRC72 034906(2005)
Hep-ph/0507084(2005)
Good sensitivity J/Y, ?(1S) ?(2S)
18
Under-progress
  • Measurement of DgtK-pp
  • Electron-muon coincidences
  • Polarization of the J/Y
  • Measurement of beauty J/Y
  • Measurement of beauty via tri-muon events
  • Measurement of charm in the muon spectrometer
  • Measurement of electro-weak bosons

19
D gt K-pp
  • Low pT under study
  • Rebinning
  • Additional cuts

Significance
Analysis feasible also without PID, but more time
consuming
pT integrated results
Elena BRUNA et Francesco PRINO, Torino
20
J/Y polarization
1lt pT lt 4 GeV/c
4 lt pT lt 7 GeV/c
pT gt 7 GeV/c
Enrico SCOMPARIN et Roberta ARNALDI Torino
21
Electro-weak bosons
  • W- gt m- n
  • Z0 gt m m-
  • Cross-checking efficiency, resolution and
    integrated luminosity
  • (Unique) shadowing measurements
  • Reference for high pT muon suppression.

sres/MZ0 2 sint/MZ0 1.2
Zaida CONESA DEL VALLE et Nicolas BLUSSEAU, Nantes
22
Running conditions
Lead-lead nominal run
Proton proton nominal run
?Ldt dt 3.1030 cm-2 s-1 x 107 s 5.1037 cm-2
for pp run, 14 TeV Npp collisions 2 .1012
collisions
?Ldt 5.1026 cm-2 s-1 x 106 s 5.1032 cm-2
PbPb run, 5.5 TeV NPbPb collisions 2 .109
collisions
????
????
Muon triggers 100 efficiency, lt 1kHz
Muon triggers 100 efficiency, 1kHz
Electron triggers 50 efficiency of TRD
L1
Electron triggers Bandwidth limitation
NPbPb central 2 .108 collisions
Hadron triggers Npp minb 2 .109 collisions
20 physics events per event
Hadron triggers NPbPb central 2 .107
collisions
????
????
23
1st scenario for physics results
  • ?Ldt dt 1030 cm-2 s-1 x 7.2x105 s
  • 7.2x1035 cm-2(0.72 pb-1) for pp run at 14TeV
  • Npp collisions 5x1010 collisions
  • Enough for doing Heavy Flavours and electro-weak
    physics
  • Spring 2008
  • First pp collisions at 0.9 TeV end of 2007

24
Conclusions
  • D meson physics can be done in the central
    barrel
  • Beauty physics can be done via single electron
    (ylt0.9), single muon (-4.ltylt-2.5)
    measurements, and dimuon correlated continuum
  • Quarkonia physics can be done via dielectron and
    dimuon channels. Quarkonia polarization can be
    measured
  • Beauty J/Y can be studied via di-electrons
  • Electro-weak physics (in a unexplored y domain)
    via muon and dimuons quark-shadowing and
    baseline.

25
Much more difficult (with the current setup)
  • Open B meson measurements
  • Open charm measurement in the muon channel.
  • Heavy flavored baryon studies
  • c quarkonia resonances
  • J/Y dimuons from beauty decays
  • Bottom-charmed mesons

Brain storming about future ALICE upgrades is
starting
Work done for Physics Performance Report of
ALICE, Vol. 2, and by the members of the Heavy
Flavour Working Group (PWG3).
26
Slides for questions
27
Quarkonia Acceptances
J/Y
J/Y
Di-electron channel
hlt0.9
2.5lthlt4.0
?
?
Di-muon channel
hlt0.9
2.5lthlt4.0
28
mm- Minv in pp _at_ 14 TeV
29
HI Quarkonia Acceptances
ATLAS CMS present a large lepton acceptance
hlt2.4
ALICE combines muonic and electronic channels
ALICE covers the low pT region ( pT0 for
quarkonia)
ALICE covers the forward region 2.5lthlt4.0
ATLAS, CMS ALICE electron with high precision
vertexing
30
Phenix Factor
T. Frawley
Write a Comment
User Comments (0)
About PowerShow.com