Chapter 4: System Modeling with Block Diagrams - PowerPoint PPT Presentation

1 / 27
About This Presentation
Title:

Chapter 4: System Modeling with Block Diagrams

Description:

FFF(z) = Y(z) / E(z) = = G(z)K(z) 16. G(z) K(z) E(z) U(z) Y(z) K(z)G(z) ... FFF. 1 FLP. H(z) 18. Analysis of Error, Disturbance and Noise. FRE = E(z) / R(z) = 1 ... – PowerPoint PPT presentation

Number of Views:80
Avg rating:3.0/5.0
Slides: 28
Provided by: Shar112
Category:

less

Transcript and Presenter's Notes

Title: Chapter 4: System Modeling with Block Diagrams


1
Chapter 4 System Modeling with Block Diagrams
2
Outline
  • Block diagrams what why
  • Sample block diagrams of known systems
  • Block diagram construction with example
  • Aggregation of blocks
  • System analysis using block diagrams
  • Reduction of complex block diagrams
  • Matlab

3
Introduction
  • Pictorial representation of a system
  • Components in the system
  • Signal flow
  • Used for understanding a system
  • Used for analyzing a system

u(k1) a1u(k) a2u(k-1) be(k1)
y(k1) cy(k) du(k)
Controller
Target System
r(k)
e(k)
u(k)
y(k)

-
e(k) y(k) r(k)
Transducer
4
Description
  • Signals - expressed in z-domain
  • Blocks - labeled by transfer function

U(z)
U(z)
Y(z)
G(z)
where, Y(z) G(z)U(z)
5
Description contd
  • Summation point
  • Branching point or take-off point

R(z)
E(z) R(z) W(z)


W(z)
Y(z)
6
Block diagrams of a few systems
Feedback Control System
7
Block diagrams of a few systems contd
Supervisory Control System
8
Supervisory Control Example Profit Maximization
Supervisory Logic
Revenue r (number of Completed transactions)
Controller design Reference value selection
Cost c (number of responses longer than
the response time constraint W)
Profit model
Profit Revenue - Cost
System identification
Users
Reference value
MaxUsers
Completed Transactions
Feedback Controller
Response Time
Server Log
Administrator
Server
9
The Big Picture
Start
System Modeling
Controller Design
Block diagram construction for Target System
Controller Evaluation-using block diagrams
Transfer function formulation and validation
Objective achieved?
Y
Stop
Model Ok?
Y
N
N
10
Block diagram Construction
Example M/M/1/K Feedback control System
  • Work flow of an M/M/1/K system

l
m

K
  • Functional block for M/M/1/K system

M/M/1/K
U(z)
Y(z)
G(z)
Response time
Buffer size
11
Example contd
  • Modeling disturbance and noise

Noise N(z)
Disturbance D(z)
M/M/1/K
T(z)
G(z)
U(z)
V(z)
Y(z)




Measured Response time
Actual Response time
Buffer size
  • Reference signal and controller

Controller
K(z)
R(z)
U(z)
Buffer size
Desired Response time
12
Example contd
13
Example contdComputation of System Transfer
function
  • G(z) for M/M/1/K
  • From system identification,
  • y(k1) 0.49y(k) 0.033u(k)
  • Taking z-transform,
  • z?k0 to 8 y(k1)z-(k1) ?k0 to80.49y(k)z-k
    ?k0 to 8 0.033u(k)z-k
  • zY(z) 0.49 Y(z) 0.033 U(z)
  • Y(z)/U(z) G(z) 0.033 / (z - 0.49)

14
Example contdComputation of Controller Transfer
function
  • K(z) for M/M/1/K Controller
  • Lets assume,
  • u(k1) 0.35u(k) 0.01u(k-1) 0.75e(k)
  • Taking z-transform,
  • z?k0 to 8 u(k1)z-(k1) ?k0 to80.35u(k)z-k
  • z-1 ?k0 to 8 0.01u(k-1)z-(k-1)
  • ?k0 to 8 0.75e(k)z-k
  • zU(z) 0.35 U(z) z-1 0.01U(z) 0.75 E(z)
  • U(z)/E(z) K(z) 0.75z / (z2 - 0.35z - 1)

15
Aggregation of Blocks
E(z)
U(z)
Y(z)
G(z)
K(z)
E(z)
Y(z)
K(z)G(z)
Feedforward transfer function
Y(z) U(z)
FFF(z) Y(z) / E(z)
U(z) E(z)
G(z)K(z)
16
Aggregation of Blocks contd
E(z)
U(z)
Y(z)
G(z)
K(z)
H(z)
W(z)
E(z)
W(z)
K(z)G(z)H(z)
Loop transfer function
W(z) Y(z) U(z)
FLP(z) W(z) / E(z)
Y(z) U(z) E(z)
H(z)G(z)K(z)
17
Transfer function of System Control Analysis
Controller
Target System
K(z)
G(z)
R(z)
Y(z)
U(z)
E(z) Error
W(z)
H(z)
R(z)
Y(z)
K(z)G(z)
1 K(z)G(z)H(z)
Reference Feedback transfer function
  • E(z) R(z) W(z)
  • R(z) E(z)K(z)G(z)H(z)
  • R(z) E(z) 1 K(z)G(z)H(z) (1)
  • Y(z) E(z)K(z)G(z) (2)
  • Using (1) and (2),
  • FR(z) Y(z) / R(z)

FFF
K(z)G(z)

1 FLP
1K(z)G(z)H(z)
18
Analysis of Error, Disturbance and Noise
D(z)
N(z)
Controller
Target System


K(z)
G(z)


R(z)
Y(z)
U(z)
T(z)
E(z) Error
W(z)
H(z)
-G(z)H(z)
  • FDE E(z) / D(z)

1 K(z)G(z)H(z)
1
  • FN T(z) / N(z)

1 K(z)G(z)H(z)
-H(z)
  • FNE E(z) / N(z)

1 K(z)G(z)H(z)
19
  • Analysis of M/M/1/K Feedback Control System

Noise N(z)
Workload Variations
Controller
M/M/1/K


K(z)
G(z)


R(z)
Y(z)
U(z)
T(z)
E(z) Error
V(z) System input
Actual Response time
Desired Response time
Measured Response time
Buffer size
K(z) 0.75z / (z2 - 0.35z - 1) G(z) 0.033 / (z
- 0.49) H(z) 1
FR(z), FRE(z), FD(z), FDE(z), FN(z), FNE(z) ?
Matlab exercise
20
Block Diagram Reduction/Aggregation
Example Cascaded Control
Measured System Utilization
D(z)
Desired System Utilization
Desired Response time
Measured Response time
users
K1(z)
K2(z)
G2(z)
G1(z)

R(z)

Y(z)


-
-
H2(z)
H1(z)
K2(z)G2(z)
K1(z)
G1(z)
R(z)
Y(z)

-
1K2(z)G2(z)H2(z)
H1(z)
K1(z)G1(z)K2(z)G2(z)
1K2(z)G2(z)H2(z)
R(z)
Y(z)
1 K1(z)G1(z)K2(z)G2(z)H1(z)
1K2(z)G2(z)H2(z)
21
Its not always simple
H1(z)
K1(z)
-
K2(z)
G(z)
Y(z)
R(z)


-
H2(z)
???
22
Reduction Rules
X
X
P2
P1P2
Y
Y
P1
X
X
Y
P1/- P2
Y
P1

/-
P2
z
KI
z-1

KP

PI Controller
23
More rules
Y
P1P2
Y
P1
X
X
1/P2


/-
/-
P2
X
Z
P
X
P

Z

/-
/-
Y
1/P
Y
X
P
X
P
Y
Y
P
Y
Y
24
Block Diagram Reduction - Example
C
D
Y
X
A
B

-
E
F
D
C/A

Y
X
A
B

-
E
F
25
Example contd
D/B
Y
X
AB
1C/A

-
E
F
D/B
Y
X
AB
1C/A

-
E
F
26
Example contd
Y
X
AB
1D/B
1C/A

-
E
F
Y
X
AB
1D/B
1C/A
1ABE
F
27
Example contd
Y
X
AB(1D/B)
1C/A
1ABE
F
(AC)(BD)
1ABE
Y
X
(AC)(BD)F
1
1ABE
Write a Comment
User Comments (0)
About PowerShow.com