Title: Chapter 4: System Modeling with Block Diagrams
1Chapter 4 System Modeling with Block Diagrams
2Outline
- Block diagrams what why
- Sample block diagrams of known systems
- Block diagram construction with example
- Aggregation of blocks
- System analysis using block diagrams
- Reduction of complex block diagrams
- Matlab
3Introduction
- Pictorial representation of a system
- Components in the system
- Signal flow
- Used for understanding a system
- Used for analyzing a system
u(k1) a1u(k) a2u(k-1) be(k1)
y(k1) cy(k) du(k)
Controller
Target System
r(k)
e(k)
u(k)
y(k)
-
e(k) y(k) r(k)
Transducer
4Description
- Signals - expressed in z-domain
- Blocks - labeled by transfer function
U(z)
U(z)
Y(z)
G(z)
where, Y(z) G(z)U(z)
5Description contd
- Summation point
- Branching point or take-off point
R(z)
E(z) R(z) W(z)
W(z)
Y(z)
6Block diagrams of a few systems
Feedback Control System
7Block diagrams of a few systems contd
Supervisory Control System
8Supervisory Control Example Profit Maximization
Supervisory Logic
Revenue r (number of Completed transactions)
Controller design Reference value selection
Cost c (number of responses longer than
the response time constraint W)
Profit model
Profit Revenue - Cost
System identification
Users
Reference value
MaxUsers
Completed Transactions
Feedback Controller
Response Time
Server Log
Administrator
Server
9The Big Picture
Start
System Modeling
Controller Design
Block diagram construction for Target System
Controller Evaluation-using block diagrams
Transfer function formulation and validation
Objective achieved?
Y
Stop
Model Ok?
Y
N
N
10Block diagram Construction
Example M/M/1/K Feedback control System
- Work flow of an M/M/1/K system
l
m
K
- Functional block for M/M/1/K system
M/M/1/K
U(z)
Y(z)
G(z)
Response time
Buffer size
11Example contd
- Modeling disturbance and noise
Noise N(z)
Disturbance D(z)
M/M/1/K
T(z)
G(z)
U(z)
V(z)
Y(z)
Measured Response time
Actual Response time
Buffer size
- Reference signal and controller
Controller
K(z)
R(z)
U(z)
Buffer size
Desired Response time
12Example contd
13Example contdComputation of System Transfer
function
- G(z) for M/M/1/K
- From system identification,
- y(k1) 0.49y(k) 0.033u(k)
- Taking z-transform,
- z?k0 to 8 y(k1)z-(k1) ?k0 to80.49y(k)z-k
?k0 to 8 0.033u(k)z-k - zY(z) 0.49 Y(z) 0.033 U(z)
- Y(z)/U(z) G(z) 0.033 / (z - 0.49)
14Example contdComputation of Controller Transfer
function
- K(z) for M/M/1/K Controller
- Lets assume,
- u(k1) 0.35u(k) 0.01u(k-1) 0.75e(k)
- Taking z-transform,
- z?k0 to 8 u(k1)z-(k1) ?k0 to80.35u(k)z-k
- z-1 ?k0 to 8 0.01u(k-1)z-(k-1)
- ?k0 to 8 0.75e(k)z-k
- zU(z) 0.35 U(z) z-1 0.01U(z) 0.75 E(z)
- U(z)/E(z) K(z) 0.75z / (z2 - 0.35z - 1)
15Aggregation of Blocks
E(z)
U(z)
Y(z)
G(z)
K(z)
E(z)
Y(z)
K(z)G(z)
Feedforward transfer function
Y(z) U(z)
FFF(z) Y(z) / E(z)
U(z) E(z)
G(z)K(z)
16Aggregation of Blocks contd
E(z)
U(z)
Y(z)
G(z)
K(z)
H(z)
W(z)
E(z)
W(z)
K(z)G(z)H(z)
Loop transfer function
W(z) Y(z) U(z)
FLP(z) W(z) / E(z)
Y(z) U(z) E(z)
H(z)G(z)K(z)
17Transfer function of System Control Analysis
Controller
Target System
K(z)
G(z)
R(z)
Y(z)
U(z)
E(z) Error
W(z)
H(z)
R(z)
Y(z)
K(z)G(z)
1 K(z)G(z)H(z)
Reference Feedback transfer function
- E(z) R(z) W(z)
- R(z) E(z)K(z)G(z)H(z)
- R(z) E(z) 1 K(z)G(z)H(z) (1)
- Y(z) E(z)K(z)G(z) (2)
- Using (1) and (2),
- FR(z) Y(z) / R(z)
FFF
K(z)G(z)
1 FLP
1K(z)G(z)H(z)
18Analysis of Error, Disturbance and Noise
D(z)
N(z)
Controller
Target System
K(z)
G(z)
R(z)
Y(z)
U(z)
T(z)
E(z) Error
W(z)
H(z)
-G(z)H(z)
1 K(z)G(z)H(z)
1
1 K(z)G(z)H(z)
-H(z)
1 K(z)G(z)H(z)
19- Analysis of M/M/1/K Feedback Control System
Noise N(z)
Workload Variations
Controller
M/M/1/K
K(z)
G(z)
R(z)
Y(z)
U(z)
T(z)
E(z) Error
V(z) System input
Actual Response time
Desired Response time
Measured Response time
Buffer size
K(z) 0.75z / (z2 - 0.35z - 1) G(z) 0.033 / (z
- 0.49) H(z) 1
FR(z), FRE(z), FD(z), FDE(z), FN(z), FNE(z) ?
Matlab exercise
20Block Diagram Reduction/Aggregation
Example Cascaded Control
Measured System Utilization
D(z)
Desired System Utilization
Desired Response time
Measured Response time
users
K1(z)
K2(z)
G2(z)
G1(z)
R(z)
Y(z)
-
-
H2(z)
H1(z)
K2(z)G2(z)
K1(z)
G1(z)
R(z)
Y(z)
-
1K2(z)G2(z)H2(z)
H1(z)
K1(z)G1(z)K2(z)G2(z)
1K2(z)G2(z)H2(z)
R(z)
Y(z)
1 K1(z)G1(z)K2(z)G2(z)H1(z)
1K2(z)G2(z)H2(z)
21Its not always simple
H1(z)
K1(z)
-
K2(z)
G(z)
Y(z)
R(z)
-
H2(z)
???
22Reduction Rules
X
X
P2
P1P2
Y
Y
P1
X
X
Y
P1/- P2
Y
P1
/-
P2
z
KI
z-1
KP
PI Controller
23More rules
Y
P1P2
Y
P1
X
X
1/P2
/-
/-
P2
X
Z
P
X
P
Z
/-
/-
Y
1/P
Y
X
P
X
P
Y
Y
P
Y
Y
24Block Diagram Reduction - Example
C
D
Y
X
A
B
-
E
F
D
C/A
Y
X
A
B
-
E
F
25Example contd
D/B
Y
X
AB
1C/A
-
E
F
D/B
Y
X
AB
1C/A
-
E
F
26Example contd
Y
X
AB
1D/B
1C/A
-
E
F
Y
X
AB
1D/B
1C/A
1ABE
F
27Example contd
Y
X
AB(1D/B)
1C/A
1ABE
F
(AC)(BD)
1ABE
Y
X
(AC)(BD)F
1
1ABE