Title: RealTime Motion and Structure Estimation from Moving Cameras
1Real-Time Motion and Structure Estimation from
Moving Cameras
David Nistér and Andrew Davison
2Very Rough Outline
- 830-1000 "Real-Time Robust Camera Motion
Estimation" - -Feature Tracking
- -RANSAC
- -Relative Orientation
- -Geometry Tools
- -1000-1030 Coffey break
- 1030-1200-"Real-Time SLAM with a Single
Camera". - - SLAM
- - Uncertainty propagation state, covariance and
EKF - - Motion model for an agile camera and EKF
prediction/update - - Active measurement using dynamically-calculated
search regions - - Real-time augmented reality and map management
3(No Transcript)
4(No Transcript)
5(No Transcript)
6(No Transcript)
7Sparse
Dense
8Sparse Reconstruction
Structure and Motion
Feature Matching
Feature Detection
Original Video
Camera Motion
Dense Reconstruction
Window-based stereo
at multiple scales
Bayesian
Surface
Model Out
Median Fusion
framework
triangulation
driven by
of depth maps
and texturing
graph cuts
9Geometry Tools
10Structure and Motion
Feature Matching
Feature Detection
Original Video
3D Reconstruction
11Feature Detection
Harris Corners
Structure and Motion
Feature Matching
Feature Detection
Original Video
3D Reconstruction
12Feature Detection
Harris Corners
13Feature Detection
Harris Corners
14Feature Detection
Harris Corners
Second Moment Matrix
15Feature Detection
5x5 Max
Image
k
Saturation
Features
16Feature Detection
17Structure and Motion
Feature Matching
Feature Detection
Original Video
3D Reconstruction
18Feature Matching/Tracking
Structure and Motion
Feature Matching
Feature Detection
Original Video
3D Reconstruction
19Feature Matching/Tracking
20Feature Matching/Tracking
21Feature Matching/Tracking
Only retain bidirectional matches No loops
because of symmetry d(a,b)d(b,a)
22Feature Matching/Tracking
Normalized Correlation
23Feature Matching/Tracking
24(No Transcript)
25Feature Matching/Tracking
26Demonstration of live feature tracking and
MSERs(Matas et al.)
27Homography
Mosaic
Structure and Motion
Feature Matching
Feature Detection
Original Video
3D Reconstruction
28Structure and Motion
Feature Matching
Feature Detection
Original Video
3D Reconstruction
29Estimate or posterior likelihood output
Hypothesis Generator
Probabilistic Formulation
Precise Formulation
Data Input
30RANSAC- Random Sample Consensus
31RANSAC- Random Sample Consensus
Line Hypotheses
Points
32RANSAC
?
Hypotheses
500
Observations
1000
500 x 1000 500.000
33Preemptive RANSAC
Depth-first Preemption
Hypotheses
500
Observations
1000
500 x ???? ???????
34Preemptive RANSAC
Breadth-first Preemption
Hypotheses
500
Chunksize
100
Observations
1000
500 x 200 100.000
Overhead 100 microseconds
35Preemptive RANSAC
Observed Tracks
36Preemptive RANSAC
37Preemptive RANSAC
38Preemptive RANSAC
Total Time for RANSAC 500 Hypothesis
generator 100.000 Observation
likelihood (Iterative Refinement)
39Relative Orientation
40Calibrated vs Uncalibrated
41Constraints
42Constraints
SingularValues
432 Views
3 Views
6p Quan, 1994
8p von Sanden, 1908 Longuet-Higgins, 1981
4p Nister, Schaffalitzky, 2004
7p R. Sturm, 1869
5p Nister, 2003
6p Philip, 1996
5p Kruppa 1913 Nister 2003
44(No Transcript)
45The Epipoles and the Epipolar Line Homography
46The Epipolar Constraint
h
47The Kruppa Constraints
h
48The Five Point Problem
What is R,t ?
E. Kruppa, Zur Ermittlung eines Objektes aus zwei
Perspektiven mit Innerer Orientierung, 1913.
49O. Faugeras and S. Maybank, Motion from Point
Matches Multiplicity of Solutions, 1990.
J. Philip, A Non-Iterative Algorithm for
Determining all Essential Matrices Corresponding
to Five Point Pairs, 1996.
B. Triggs, Routines for Relative Pose of Two
Calibrated Cameras from 5 Points, 2000.
D. Nister, An Efficient Solution to the
Five-Point Relative Pose Problem, 2002.
50The solution is minimal in two respects
51Nr of Roots
Average 4.55
52Nr of Solutions
Average 2.74
5310 Solutions
0.067, 0.287 lt gt 0.329,1.297 0.254,
0.0646 lt gt 0.523,1.0807 0.239, -0.213 lt
gt 0.517,0.645 -0.710, -0.693 lt gt
-0.141,0.157 0.661, -0.307 lt gt 0.950,
0.773
54The 5-point algorithm (Nistér PAMI 04)
55The 5-point algorithm (Nistér CVPR 03)
E
R,t
56The 5-point algorithm (Nistér PAMI 04)
R,t
E
57The 5-point algorithm (Stewénius et al)
10 x 10 Action Matrix
Eigen-Decomposition
R,t
E
58(No Transcript)
59Noise
Minimal Cases, Sideways Motion
Depth 0.5 Baseline 0.1 Field of View 45 degrees
60Direction
50 points
Depth 0.5 Baseline 0.1 Field of View 45 degrees
61Baseline
Minimal Cases, Sideways Motion
Depth 0.5 Baseline 0.1 Field of View 45 degrees
62Easy Conditions
Realistic Conditions
Correct Calibration
63Focal Length Miscalibration
0.7
0.5
0.3
0.05
3.0
2.0
1.5
1.3
64Planar Ambiguity, Uncalibrated
2Degrees of Freedom
65Planar Ambiguity, Calibrated
2-Fold or Unique
66Depth
67Uncertainty in Epipolar Geometry work with Chris
Engels
Single Estimate often ill posed
Representation of posterior likelihood well
posed, but computationally challenging
68Uncertainty in Epipolar Geometry work with Chris
Engels
Single Estimate often ill posed
Representation of posterior likelihood well
posed, but computationally challenging
69Epipoloscope Demo
70Triangulation
71Triangulation
- 2 Stages Correction Ideal Triangulation
72Triangulation
- Rays Intersect lt-gt Rays Coplanar
73Triangulation
- One parameter family Balance the error
74Triangulation
- One parameter family Balance the error
x
x
e
e
75Triangulation
- One parameter family Balance the error
76Triangulation
- One parameter family Balance the error
- Max-Norm -gt Quartic (Closed form, Nistér)
- L2-Norm -gt Sextic (Hartley Sturm)
- Directional Error -gt Quadratic (Oliensis)
77Optimal 3 View Triangulation work with Henrik
Stewenius and Fred Schaffalitzky
47 Stationary Points
78Sampson Approximation
Where
is the covariance matrix of detected image
features and
are the incidence function and its Jacobian
and
79Sampson Approximation
For two views this leads to
For three views, an approximation of the distance
to trifocal Incidence can be found by tensor
contractions and Cramers rule in lt1 microsecond
Assuming Cauchy distribution
80Bundle Adjustment
81Trust Region Methods
x
82Trust Region Methods
x
dx
83Trust Region Methods
x
dx
84Trust Region Methods
x
dx
85Least squares with Gauss Newton Approximation
Results in cost function approximation
Identify Gradient
and Hessian Approximation
86Bundle Adjustment
Block LU factorization
Multiply by
Multiply by
First order sparsity
87Bundle Adjustment
Block LU factorization
Multiply by
Multiply by
88Bundle Adjustment
Range
Bundle Adjuster
Domain
89Reprojection constraint
World point
Image point
3DCamera
Radial Distortion
spaf
RC
RP
T
902D-3D Pose
91The Generalized 3-Point Problem
92The Generalized 3-Point Problem
93(No Transcript)
94(No Transcript)
95(No Transcript)
96(No Transcript)
97(No Transcript)
98(No Transcript)
99(No Transcript)
100(No Transcript)
101(No Transcript)
102(No Transcript)
103(No Transcript)
104(No Transcript)
105(No Transcript)
106(No Transcript)
107(No Transcript)
108(No Transcript)
109(No Transcript)
110(No Transcript)
111(No Transcript)
112(No Transcript)
113(No Transcript)
114(No Transcript)
115(No Transcript)
116(No Transcript)
117(No Transcript)
118(No Transcript)
119(No Transcript)
120(No Transcript)
121(No Transcript)
122(No Transcript)
123(No Transcript)
124(No Transcript)
125(No Transcript)
126(No Transcript)
127(No Transcript)
128(No Transcript)
129(No Transcript)
130(No Transcript)
131(No Transcript)
132(No Transcript)
133(No Transcript)
134(No Transcript)
135(No Transcript)
136(No Transcript)
137(No Transcript)
138(No Transcript)
139(No Transcript)
140(No Transcript)
141(No Transcript)
142(No Transcript)
143(No Transcript)
144(No Transcript)
145(No Transcript)
146(No Transcript)
147(No Transcript)
148(No Transcript)
149(No Transcript)
150(No Transcript)
151(No Transcript)
152(No Transcript)
153(No Transcript)
154(No Transcript)
155(No Transcript)
156(No Transcript)
157(No Transcript)
158(No Transcript)
159(No Transcript)
160(No Transcript)
161(No Transcript)
162(No Transcript)
163(No Transcript)
164(No Transcript)
165(No Transcript)
166(No Transcript)
167(No Transcript)
168(No Transcript)
169(No Transcript)
170(No Transcript)
171(No Transcript)
172(No Transcript)
173(No Transcript)
174(No Transcript)
175(No Transcript)
176(No Transcript)
177(No Transcript)
178(No Transcript)
179(No Transcript)
180(No Transcript)
181(No Transcript)
182(No Transcript)
183(No Transcript)
184(No Transcript)
185(No Transcript)
186(No Transcript)
187(No Transcript)
188(No Transcript)
189(No Transcript)
190(No Transcript)
191(No Transcript)
192(No Transcript)
193(No Transcript)
194(No Transcript)
195(No Transcript)
196(No Transcript)
197(No Transcript)
198(No Transcript)
199(No Transcript)
200(No Transcript)
201(No Transcript)
202(No Transcript)
203(No Transcript)
204(No Transcript)
205(No Transcript)
206(No Transcript)
207(No Transcript)
208(No Transcript)
209(No Transcript)
210(No Transcript)
211(No Transcript)
212(No Transcript)
213(No Transcript)
214(No Transcript)
215(No Transcript)
216(No Transcript)
217(No Transcript)
218(No Transcript)
219(No Transcript)
220(No Transcript)
221(No Transcript)
222(No Transcript)
223(No Transcript)
224(No Transcript)
225(No Transcript)
226(No Transcript)
227(No Transcript)
228(No Transcript)
229(No Transcript)
230(No Transcript)
231(No Transcript)
232(No Transcript)
233(No Transcript)
234(No Transcript)
235(No Transcript)
236(No Transcript)
237(No Transcript)
238(No Transcript)
239(No Transcript)
240(No Transcript)
241(No Transcript)
242(No Transcript)
243(No Transcript)
244(No Transcript)
245(No Transcript)
246(No Transcript)
247(No Transcript)
248(No Transcript)
249(No Transcript)
250(No Transcript)
251(No Transcript)
252(No Transcript)
253(No Transcript)
254(No Transcript)
255(No Transcript)
256(No Transcript)
257(No Transcript)
258(No Transcript)
259(No Transcript)
260(No Transcript)
261(No Transcript)
262(No Transcript)
263(No Transcript)
264Seamlessly into the classical case
2656-point pose
Linear, stack 5 point constraints, results in
pencil of cameras
Projects world point onto image line
Correct point by perpendicular projection. Add
constraint and solve uniquely
266Absolute OrientationStitching
B. Horn, Closed-Form Solution of Absolute
Orientation using Unit Quarternions
267Absolute OrientationStitching
268Absolute OrientationStitching
One camera overlap
Projective 4 points, Nistér 01 Calibrated 1
point
269(No Transcript)
270Timing
271Demonstration of real-time single camera tracking
272Computing vehicle pose
Vehicle pose
273Kalman filter pose with Visual Odometry
No VisOdo
VisOdo
274(No Transcript)
275(No Transcript)
276(No Transcript)
277Moving Stereo Pair
278Moving Stereo Pair
279Moving Stereo Pair
280Visual Odometrywork with Oleg Naroditsky and Jim
Bergen
281Visual Odometrywork with Oleg Naroditsky and Jim
Bergen
- 365 m without loss of tracking
- 350 m ( 3.5 minutes) without GPS
- Error in distance traveled 1
- Accumulated error in position 3-5
- e.g. 10m over 350m
North
East
282Visual Odometrywork with Oleg Naroditsky and Jim
Bergen
283(No Transcript)
284Visual Odometrywork with Oleg Naroditsky and Jim
Bergen
285(No Transcript)
286Dense Reconstruction
287Discontinuity Energy
Dissimilarity Energy
288Median Fusion