Symmetry: - PowerPoint PPT Presentation

1 / 58
About This Presentation
Title:

Symmetry:

Description:

Symmetry: Wallpaper, Tiles, and Escher. Richard Kramer. Feb. 8, 2001 ... 17 Types of Symmetry on a plane. Tiling. Escher: Bending the Boundaries. Definition: ... – PowerPoint PPT presentation

Number of Views:83
Avg rating:3.0/5.0
Slides: 59
Provided by: richard627
Category:

less

Transcript and Presenter's Notes

Title: Symmetry:


1
Symmetry
  • Wallpaper, Tiles, and Escher
  • Richard Kramer
  • Feb. 8, 2001

2
  • Rigid Motions on a plane
  • Symmetry of Finite Objects
  • The Algebra of a Pentagon
  • First Diversion Symmetry in Physics
  • Symmetry of Infinite Objects
  • Strips Ribbon Science
  • 17 Types of Symmetry on a plane
  • Tiling
  • Escher Bending the Boundaries

3
Rigid Motions on a plane
  • Definition
  • The distance between any two points is the same
    afterwards.
  • Types
  • Do Nothing
  • Translation
  • Rotation
  • Reflection
  • Glide Reflection

4
(No Transcript)
5
(No Transcript)
6
(No Transcript)
7
(No Transcript)
8
  • Symmetry of Finite Objects
  • The Algebra of a Pentagon
  • First Diversion Symmetry in Physics

9
A symmetry of an of an object is the result of
applying a rigid motion such that it looks the
same.
An object is finite if there exists no
translation of it that results in a symmetry.
10
The Algebra of a Pentagon
  • Definitions
  • 1 do nothing
  • r 1/5 rotation counterclockwise
  • m reflection across the vertical axis
  • ab doing b and then doing a
  • r2 rr
  • rarb r ab
  • Discoveries
  • mm 1
  • rmr m
  • rrrrr r5 1

11
  • Group Axioms
  • If a and b are members of the group, then so
    is ab.
  • There exists an 1 such that for any a, 1a
    a1 a.
  • For any a, there exists a b such that ab 1.
  • For each a, we will call its b, a-1.
  • For any a, b, and c, (ab)c a(bc).
  • For a Pentagon combinations of r, m, and 1
    are a group
  • 1 mm r5
  • m-1 m
  • (rn)-1 r5-n
  • (mrn)-1 mrn

12
Diversion 1
  • Symmetry in Physics

13
1 (a)(b)(c)(d)(e) r (abcde) m (a)(be)(cd)
14
(No Transcript)
15
v f e 2
(v f) (e)
16
(No Transcript)
17
  • Symmetry of Infinite Objects
  • Strips Ribbon Science
  • 17 Types of Symmetry on a plane
  • Tiling
  • A Finite Object Legal Moves on a Grid
  • 3 Possible Grids
  • Examples
  • Second Diversion Penrose Tiles

18
Strips
19
Seventeen Kinds of Symmetry
0 monorhombic
monoscopic
00 monoglide
0 monotropic
2222 discopic
222 dirhombic
22 digyro
220 diglide
2222 ditropic
333 triscopic
33 trigyro
333 tritropic
442 tetrascopic
42 tetragyro
442 tetratropic
632 hexascopic
632 hexatropic
http//www.geom.umn.edu/apps/kali/about.html
20
(No Transcript)
21
(No Transcript)
22
(No Transcript)
23
(No Transcript)
24
(No Transcript)
25
(No Transcript)
26
(No Transcript)
27
(No Transcript)
28
(No Transcript)
29
(No Transcript)
30
(No Transcript)
31
(No Transcript)
32
(No Transcript)
33
(No Transcript)
34
(No Transcript)
35
(No Transcript)
36
(No Transcript)
37
scopic all mirrors tropic no mirrors gyro
mirrors gyration points glide glide
reflection no reflection rhombic glide
reflection reflection
38
  • Tiling
  • Choose a grid
  • Get a basic shape
  • Define a set of legal moves such that
  • everything is covered
  • there is no overlap

39
(No Transcript)
40
(No Transcript)
41
(No Transcript)
42
(No Transcript)
43
(No Transcript)
44
(No Transcript)
45
(No Transcript)
46
(No Transcript)
47
(No Transcript)
48
Diversion 2
Penrose Tiles
49
(No Transcript)
50
(No Transcript)
51
(No Transcript)
52
Escher Bending the Boundaries
53
(No Transcript)
54
(No Transcript)
55
(No Transcript)
56
(No Transcript)
57
(No Transcript)
58
(No Transcript)
Write a Comment
User Comments (0)
About PowerShow.com