Chap'3 : BirthDeath Queueing Systems in Equilibrium - PowerPoint PPT Presentation

1 / 24
About This Presentation
Title:

Chap'3 : BirthDeath Queueing Systems in Equilibrium

Description:

y3(i 1) = PrSystemSizeisX(0.472,i); y4(i 1) = PrSystemSizeisX(0.6,i) ... semilogy(x,y1,'d',x,y2,'s', x,y3,'v', x,y4,'^',x,y5,'o'); grid on; xlabel('Queue size' ... – PowerPoint PPT presentation

Number of Views:59
Avg rating:3.0/5.0
Slides: 25
Provided by: syy4
Category:

less

Transcript and Presenter's Notes

Title: Chap'3 : BirthDeath Queueing Systems in Equilibrium


1
Chap.3 Birth-Death Queueing Systems in
Equilibrium
  • S.Y. Yang

2
General Equilibrium Solution
3
Conservation?
  • In equilibrium case it is clear that flow must be
    conserved in the sense that the input flow must
    equal the output flow from a given state.

4
conservation of flow across any closed boundary
5
M/M/1 The Classical Queueing System
  • All birth coefficients equal to a constant
  • All death coefficients equal to a constant

6
continued
  • Average number of customers in the system
  • Average time spent in the system

7
continued
  • The probability of finding at least k customers
    in the system

8
Graph of the Average Number of Packets in the
M/M/1 Queue
9
close clear x00.0010.980 y(x)./((1-x)) pl
ot(x,y) grid on xlabel('Utilization') ylabel('A
verage number in queueing system')
10
System State Distribution for the M/M/1 Queue
11
close clear x0120 for i020 y1(i1)
PrSystemSizeisX(0.2,i) y2(i1)
PrSystemSizeisX(0.4,i) y3(i1)
PrSystemSizeisX(0.472,i) y4(i1)
PrSystemSizeisX(0.6,i) y5(i1)
PrSystemSizeisX(0.8,i) end semilogy(x,y1,'d'
,x,y2,'s', x,y3,'v', x,y4,'',x,y5,'o') grid
on xlabel('Queue size') ylabel('Probability') l
egend('rho0.2','rho0.4','rho0.472','rho0.6','r
ho0.8',3)
function yPrSystemSizeisX(rho,x) y(1-rho)(rho
x)
12
Average waiting time for M/M/1 Queue(ATM case)
13
close clear for i0950 x(i1) i/1000
y1(i1) MM1tw(x(i1),2.831) y2(i1)
MD1tw(x(i1),2.831) y3(i1) 2.831
end plot(x,y1,x,y2,x,y3) plot(x,y1,x,y3) gri
d on xlabel('Utilization') ylabel('Average
waiting time (in microseconds)') legend('M/M/1','
1 cell time1/u2.831us, STM-1 case',2)
function yMM1tw(rho,s) y(rhos) / ((1-rho)eps)
14
Estimate Loss Probability for the M/M/1 Queue
15
close clear k 24 for i200980 x(i1)
i/1000 y1(i1) PrSystemSizeisX
(x(i1),k) y2(i1) PrSystemSizeisGTX(x(i1),k)
end semilogy(x,y1,x,y2) semilogy(x,y2)
grid on xlabel('Utilization') ylabel('Probabil
ity') legend('Queue size k24', 'Queue size
kgt24',2)
16
Discouraged Arrivals
  • Birth and Death Coefficients

17
M/M/Infinite Responsive Servers
  • Birth and Death Coefficients

18
M/M/m The m-server case
  • Birth and Death Coefficients

19
M/M/1/K Finite Storage
  • Birth and Death Coefficients

20
M/M/m/m m-server Loss System
  • Birth and Death Coefficients
  • The fraction of time that all m servers are busy.

21
M/M/1//M Finite Customer Population Single Server
  • Birth and Death Coefficients

22
M/M/Infinite//M Finite Customer Population,
Infinite Number of Server
  • Birth and Death Coefficients

23
M/M/m/K/M Finite Population, m-Server, Finite
Storage
  • Birth and Death Coefficients

24
References
  • Queueing Systems Volume I Theory, Leonard
    Kleinrock, 1975, JWS http//www.lk.cs.ucla.edu/
  • Introduction to IP and ATM Design and
    Performance, 2nd Edition, Pitts Schormans,
    2000, JWS http//www.elec.qmw.ac.uk/ipatm/
  • Lecture Notes from http//vega.icu.ac.kr/bnec/
    written by Professor J.K. Choi.
Write a Comment
User Comments (0)
About PowerShow.com