Hierarchical Linear Models - PowerPoint PPT Presentation

1 / 23
About This Presentation
Title:

Hierarchical Linear Models

Description:

'super-population' prior. WinBUGS code for 1 set of RE. model. for( i in 1 : N ) ... HLM. General Case. likelihood. super-pop'n. hyperprior. One Big Linear Regression ... – PowerPoint PPT presentation

Number of Views:46
Avg rating:3.0/5.0
Slides: 24
Provided by: astorS
Category:

less

Transcript and Presenter's Notes

Title: Hierarchical Linear Models


1
Hierarchical Linear Models
2
Revisit Hierarchical Model
hyper-prior
  • Rat tumor experiments, j1,2,,71

hyper-parameters
super-population prior
parameters
likelihood
3
Meta-analysis of beta-blocker
hyper-prior
  • Beta-blocker trials, j1,2,,22

?0, t
hyper-parameters
super-population prior
?22
parameters
likelihood
y22
4
In the form of a HLM
hyper-prior
?0, t
ß0, t
hyper-parameters
super-population prior
?22
ß1 ß2 ß3
ß (ß1,ß2, , ß22)
likelihood
y22
known
5
1 set of random effects
super-population prior
ß0
ß0
hyper-prior
Noninformative
Informative Empirical
6
WinBUGS code for 1 set of RE
  • model
  • for( i in 1 N )
  • Yi dnorm(betai,tau.yi)
  • betai dnorm(beta0,tau.beta0
  • beta0 dflat()
  • tau.beta0 dchisq(2)
  • data
  • list(N22,Yc(), tau.yc())

likelihood
super-population prior
hyper-prior
7
The School Example
  • Yij bj ? bj ?ij,
  • with ?ij N(0,sy2) bj N(0,sb2)
  • for student i in school j. There is a random
    school effect
  • YN(Xß, sy2I)

8
  • model
  • for( i in 1 N ) N number of students
  • Yidnorm(bi,tau.y)1/sigma.y2
  • bi lt- betaschooli
  • for( j in 1 M ) M no. of schools
  • betaj dnorm(mu, tau.b)
  • sigma.y1/sqrt(tau.y)
  • log(sigma.y) dflat() or invGamma on s2
  • mu dflat() or mu dnorm(0.0,1.0E-6)
  • tau.b dflat() or dchisq(2)
  • data
  • list(N, M,Y)

9
The School Example, 2 levels
  • Yijk ? bj ck ?ijk,
  • ?ijk N(0,sy2), bj N(0,sb2), ck N(0,sc2)
  • Student i is in school j class k. There is a
    random school effect random class effect.
    Assuming classes are exchangeable
  • YN(Xß, sy2I)

10
  • model
  • for( i in 1 N ) N number of students
  • Yidnorm(mi,tau.y)1/sigma.y2
  • mi lt- mubschoolicclassi
  • for( j in 1 M ) M no. of schools
  • bj dnorm(0, tau.b)
  • for( k in 1 K ) K no. of classes
  • cj dnorm(0, tau.c)
  • sigma.y1/sqrt(tau.y)
  • log(sigma.y) dflat() or Gamma on tau.y
  • mu dflat() or mu dnorm(0.0,1.0E-6)
  • tau.b dflat() or dchisq(2)
  • tau.c dflat()

11
fixed
random
Same as setting these sß2 to 8
ß0
12
Several clusters
13
Weight Growth of Rats
14
(No Transcript)
15
E(Yij ai, ßi) ai ßiXj , i-th rat, j-th
week ai N(a0 , ?a ) ßi N(?0 , ?ß)
Random Effects
a (a1, ,a30), ß(ß1, ,ß30) can be correlated
16
Model
can be noninformative
17
(No Transcript)
18
(No Transcript)
19
Gibbs
20
  • model
  • likelihood
  • for(i in 1N)
  • for(j in 1T)
  • Yi,j dnorm(mui,tau.y)
  • mui,jlt- thetai,1 thetai,2 xj
    theta(alpha,beta)
  • super-population
  • thetai,12dmnorm(ehta12,
    tau.theta12,12)
  • prior
  • tau.ydgamma(0.001,0.001) or log(1/tau.y)dflat(
    )
  • hyper-priors
  • for (k in 12) ehtakdflat() or another
    dmnorm()
  • R21,12 lt- c(10000, 5000)
  • R22,12 lt- c(5000, 10000)
  • tau.theta12,12 dwish(R212, 12,2)

21
HLM
22
General Case
likelihood
super-popn
hyperprior
23
One Big Linear Regression
Write a Comment
User Comments (0)
About PowerShow.com