Atomic Physics with Supercomputers - PowerPoint PPT Presentation

1 / 55
About This Presentation
Title:

Atomic Physics with Supercomputers

Description:

M. S. Pindzola, F. Robicheaux, J. Colgan, Auburn University, Auburn, AL. D. C. Griffin, ... Strathclyde University, Glasgow, UK. Outline. What are we calculating? ... – PowerPoint PPT presentation

Number of Views:38
Avg rating:3.0/5.0
Slides: 56
Provided by: iafe
Category:

less

Transcript and Presenter's Notes

Title: Atomic Physics with Supercomputers


1
Atomic Physics with Supercomputers
Darío M. Mitnik
2
Electron-Ion scatteringcalculations
Darío M. Mitnik
3
Atomic Physics with Supercomputers
Darío M. Mitnik
4
M. S. Pindzola, F. Robicheaux, J.
Colgan, Auburn University, Auburn, AL D. C.
Griffin, Rollins College, Winter Park, FL N. R.
Badnell Strathclyde University, Glasgow, UK
5
Outline
  • What are we calculating?
  • Why do we need supercomputers for such
    calculations?
  • How do we use the supercomputers in these
    calculations?

6
What are we calculating?
  • Cross Sections
  • Rate Coefficients

7
Electron-Impact Excitation
N-electron ion
8
Electron-Impact Excitation
ltyafi V ybff gt
yb
ff
ya
fi
9
Electron-Impact Ionization
(N-1) electron ion
ki
EI
ya
N electron ion
10
Electron-Impact Ionization
ltyafi V feff gt
fe
ff
ya
fi
11
Radiative Recombination
ya
yb
12
Radiative Recombination
Photoionization
Mba ltyb D yafi gt
ya fi
yb
w
13
Dielectronic Recombination
Photoionization
Mba ltyb D yafi gt
ya fi
yb
w
14
Dielectronic Recombination
ya
15
Dielectronic Recombination
16
Dielectronic Recombination
D.M. Mitnik et al, Phys. Rev. A 61, 022705 (2000)
17
Dielectronic Recombination
D.M. Mitnik et al, Phys. Rev. A 57, 4365 (1998)
18
Electron-ion Recombination
D.M. Mitnik et al, Phys. Rev. A 59, 3592 (1999)
19
Excitation-Autoionization
20
Excitation-Autoionization
D.M. Mitnik et al, Phys. Rev. A 53, 3178 (1996)
21
Excitation (resonances)
22
Excitation (resonances)
D.M. Mitnik et al, Phys. Rev. A 62, 062711 (2000)
23
Excitation (resonances)
D.C. Griffin et al, J. Phys. B 33, 4389 (2000)
24
Why supercomputersin Atomic Physics?
  • only a few atomic physicists are using
    supercomputers

25
Why supercomputersin Atomic Physics?
  • T. R. Rescigno et al., Science 286, 2474 (1999).
  • M. S. Pindzola and F. Robicheaux, Phys. Rev. A
    54, 2142 (1996).
  • Collisional breakup in a quantum system of three
    charged particles

26
Electron-Impact Ionization of Hydrogen
27
Methods
28
Time-independent R-matrix method
P. G. Burke and K. A. Berrington
27 key papers reprinted
Short Bibliography list
547 references
29
Time-independent R-matrix method
Internal Region
External Region
a
Y sin(kr) Kcos(kr)
30
Why supercomputers?
Size of (N1)-Hamiltonian MXMAT MZCHF x MZNR2
MZNC2
158 x 50 100 8000 512 Mb
31
Why supercomputers?
  • Thousands of points are needed
  • in order to map the narrow resonances.

D.C. Griffin et al, J. Phys. B 33, 4389 (2000)
32
Time-Dependent method
Time-dependent Schrodinger equation
33
Time-Dependent method
Time-dependent close-coupled equation
34
Why supercomputers?
16 x 250 x 250 1000000
250 x 250 62500
35
Why supercomputers?
  • Time
  • Memory

36
What is a supercomputer?
  • Shared-Memory
  • Distributed-Memory

37
Glossary
  • parallelization
  • functional parallelism
  • data parallelism

38
Example of data parallelism
  • we have 10000 cards
  • we want to pick up the highest card
  • each comparison takes 1 second

39
Example of data parallelism
Time (sec)
Processors
40
Example of a simple program
print, hello world stop end
call mpi_init call mpi_ rank(iam,nproc) print,
hello world, from process ,iam call
mpi_finalize stop end
41
Example of a simple program
hello world
hello world, from process 2 hello world, from
process 0 hello world, from process 4 hello
world, from process 1 hello world, from process
3
42
The R-matrix I package
  • Inner-Region
  • STG1 calculates the orbital basis and all
    radial integrals
  • STG2 calculates LS-coupling matrix elements.
    solves the N-electron problem.
    sets the (N1)-electron Hamiltonian
  • STG3 diagonalizes the (N1)-electron
    Hamiltonian in the continuum basis

43
The R-matrix I package
  • Outer-Region
  • STGF solves the external-region coupled
    equations.
  • STGICF calculates level-to-level collision
    strengths by doing
    an intermediate- coupling frame
    transformation.

44
Diagonalization Timing
45
Example
46
Parallelization of the external-region codes
47
Time-Dependent method
Time-dependent Schrodinger equation
Time evolution of a single-channel
48
Time-Dependent method
Initial condition for the solution
49
Initial condition for the solution
50
Time-Dependent method
51
Propagated wavefunction
52
Time-Dependent method
Projection of the wavefunction
53
Parallelization of the time-dependent codes
54
Conclusions
  • Atomic Physics is still alive

55
(No Transcript)
Write a Comment
User Comments (0)
About PowerShow.com