Title: Atomic Physics with Supercomputers
1Atomic Physics with Supercomputers
DarÃo M. Mitnik
2Electron-Ion scatteringcalculations
DarÃo M. Mitnik
3Atomic Physics with Supercomputers
DarÃo M. Mitnik
4M. S. Pindzola, F. Robicheaux, J.
Colgan, Auburn University, Auburn, AL D. C.
Griffin, Rollins College, Winter Park, FL N. R.
Badnell Strathclyde University, Glasgow, UK
5Outline
- Why do we need supercomputers for such
calculations?
- How do we use the supercomputers in these
calculations?
6What are we calculating?
7Electron-Impact Excitation
N-electron ion
8Electron-Impact Excitation
ltyafi V ybff gt
yb
ff
ya
fi
9Electron-Impact Ionization
(N-1) electron ion
ki
EI
ya
N electron ion
10Electron-Impact Ionization
ltyafi V feff gt
fe
ff
ya
fi
11Radiative Recombination
ya
yb
12Radiative Recombination
Photoionization
Mba ltyb D yafi gt
ya fi
yb
w
13Dielectronic Recombination
Photoionization
Mba ltyb D yafi gt
ya fi
yb
w
14Dielectronic Recombination
ya
15Dielectronic Recombination
16Dielectronic Recombination
D.M. Mitnik et al, Phys. Rev. A 61, 022705 (2000)
17Dielectronic Recombination
D.M. Mitnik et al, Phys. Rev. A 57, 4365 (1998)
18Electron-ion Recombination
D.M. Mitnik et al, Phys. Rev. A 59, 3592 (1999)
19Excitation-Autoionization
20Excitation-Autoionization
D.M. Mitnik et al, Phys. Rev. A 53, 3178 (1996)
21Excitation (resonances)
22Excitation (resonances)
D.M. Mitnik et al, Phys. Rev. A 62, 062711 (2000)
23Excitation (resonances)
D.C. Griffin et al, J. Phys. B 33, 4389 (2000)
24Why supercomputersin Atomic Physics?
- only a few atomic physicists are using
supercomputers
25Why supercomputersin Atomic Physics?
- T. R. Rescigno et al., Science 286, 2474 (1999).
- M. S. Pindzola and F. Robicheaux, Phys. Rev. A
54, 2142 (1996).
- Collisional breakup in a quantum system of three
charged particles
26Electron-Impact Ionization of Hydrogen
27Methods
28Time-independent R-matrix method
P. G. Burke and K. A. Berrington
27 key papers reprinted
Short Bibliography list
547 references
29Time-independent R-matrix method
Internal Region
External Region
a
Y sin(kr) Kcos(kr)
30Why supercomputers?
Size of (N1)-Hamiltonian MXMAT MZCHF x MZNR2
MZNC2
158 x 50 100 8000 512 Mb
31Why supercomputers?
- Thousands of points are needed
- in order to map the narrow resonances.
D.C. Griffin et al, J. Phys. B 33, 4389 (2000)
32Time-Dependent method
Time-dependent Schrodinger equation
33Time-Dependent method
Time-dependent close-coupled equation
34Why supercomputers?
16 x 250 x 250 1000000
250 x 250 62500
35Why supercomputers?
36What is a supercomputer?
37Glossary
38Example of data parallelism
- we have 10000 cards
- we want to pick up the highest card
- each comparison takes 1 second
39Example of data parallelism
Time (sec)
Processors
40Example of a simple program
print, hello world stop end
call mpi_init call mpi_ rank(iam,nproc) print,
hello world, from process ,iam call
mpi_finalize stop end
41Example of a simple program
hello world
hello world, from process 2 hello world, from
process 0 hello world, from process 4 hello
world, from process 1 hello world, from process
3
42The R-matrix I package
- Inner-Region
- STG1 calculates the orbital basis and all
radial integrals - STG2 calculates LS-coupling matrix elements.
solves the N-electron problem.
sets the (N1)-electron Hamiltonian - STG3 diagonalizes the (N1)-electron
Hamiltonian in the continuum basis
43The R-matrix I package
- Outer-Region
- STGF solves the external-region coupled
equations. - STGICF calculates level-to-level collision
strengths by doing
an intermediate- coupling frame
transformation.
44Diagonalization Timing
45Example
46Parallelization of the external-region codes
47Time-Dependent method
Time-dependent Schrodinger equation
Time evolution of a single-channel
48Time-Dependent method
Initial condition for the solution
49Initial condition for the solution
50Time-Dependent method
51Propagated wavefunction
52Time-Dependent method
Projection of the wavefunction
53Parallelization of the time-dependent codes
54Conclusions
- Atomic Physics is still alive
55(No Transcript)