Hierarchical Choice Models for Adversarial Risk - PowerPoint PPT Presentation

1 / 10
About This Presentation
Title:

Hierarchical Choice Models for Adversarial Risk

Description:

Multinomial Logit Model. Ignore P(j 2 Ci) for the moment. Pi(j) = P(Vj ej max{kj} Vk ek) ... Hierarchical Multinomial Choice. Defender's Action ... – PowerPoint PPT presentation

Number of Views:18
Avg rating:3.0/5.0
Slides: 11
Provided by: mdpo
Category:

less

Transcript and Presenter's Notes

Title: Hierarchical Choice Models for Adversarial Risk


1
Hierarchical Choice Models for Adversarial Risk
  • Michael Porter
  • SAMSI AR Working Group
  • 29 Nov 2007

2
?
A1 A2 An
D1 UD(1,1) UD(1,2) UD(1,j) UD(1,n)
D2 UD(2,1) UD(2,2) UD(2,j) UD(2,n)
UD(i,1) UD(i,2) UD(i,j) UD(i,n)
Dm UD(m,1) UD(m,2) UD(m,j) UD(m,n)
A1 A2 An
D1 P(1,1) P(1,2) P(1,j) P(1,n)
D2 P(2,1) P(2,2) P(2,j) P(2,n)
P(i,1) P(i,2) P(i,j) P(i,n)
Dm P(m,1) P(m,2) P(m,j) P(m,n)
UD(i,j) Defenders Utility of Attackers choice
j given Defender chose i. P(i,j) Estimated
probability Attacker chooses j given Defender
chooses i.
3
Defenders Action
EUD
D1 ¹D1 ? UD(1,j) P(1,j)
D2 ¹D2 ? UD(2,j) P(2,j)
¹Di ? UD(i,j) P(i,j)
Dm ¹Dm ? UD(m,j) P(m,j)
Which action should Defender take?
D argmaxi mDi
D maximizes expected utility
4
Estimating Attacker Probabilities
  • The estimation of P(i,j) seems very difficult as
    it must account for
  • A1 The utility of outcome (i,j) to the attacker
  • A2 The probability that the attacker will even
    evaluate action j
  • Financial constraints
  • Supply constraints
  • Technological constraints
  • Etc.

5
?
  • Estimate A1 and A2 separately
  • Let UA(i,j) V(i,j) e(i,j)
  • Random utility where e(i,j) describes the
    uncertainly in estimating the attackers utility
    for outcome (i,j)
  • V(i,j) is the point estimate for the attackers
    utility (non-stochastic)
  • Let P(j 2 Ci) be the estimated probability that
    action j is in the attackers choice set when
    defender chooses action i

6
Multinomial Choice Models
  • Pi(j) P(Uj gt maxk?j Uk)
  • P(Vj ej gt maxk?j Vk ek)
  • Assume ej are independent with Type I extreme
    value distribution (Gumbel Distribution)
  • ej EV1(j,µ)

7
Type I Extreme Value R.V.s
  • P1 If X EV1(,µ)
  • then Xb EV1( b,µ)
  • P2 If X EV1(X,µ) and Y EV1(Y,µ)
  • then FX-Y(x-y)
  • (1expµ(X- Y - (x-y)))-1
  • P3 If Xi EV1(i,µ)
  • then
  • maxi Xi EV1(µ-1 ?expiµ, µ)

8
Multinomial Logit Model
  • Ignore P(j 2 Ci) for the moment
  • Pi(j) P(Vj ej gt maxk?j Vk ek)
  • Assume ej EV1(0,µ)
  • Vjej EV1(Vj,µ) (from P1)
  • Vjej maxk?j Vk ek
  • EV1(µ-1 ?k?j expVkµ,µ)
  • (from P3)
  • Pi(j) P(Vj ej gt Vj ej)
  • P(Vj ej - Vj ej lt 0)
  • (1expµ(Vj - Vj))-1 (from
    P2)

9
Defenders Probability of Action j
  • Further derivation leads to
  • Hierarchical Multinomial Choice

10
Defenders Action
  • The expected utility for defender action i
    becomes
  • ¹Di ? UD(i,j) Pi(j)
  • And the optimal action for defender
Write a Comment
User Comments (0)
About PowerShow.com