Title: Hierarchical Choice Models for Adversarial Risk
1Hierarchical Choice Models for Adversarial Risk
- Michael Porter
- SAMSI AR Working Group
- 29 Nov 2007
2?
A1 A2 An
D1 UD(1,1) UD(1,2) UD(1,j) UD(1,n)
D2 UD(2,1) UD(2,2) UD(2,j) UD(2,n)
UD(i,1) UD(i,2) UD(i,j) UD(i,n)
Dm UD(m,1) UD(m,2) UD(m,j) UD(m,n)
A1 A2 An
D1 P(1,1) P(1,2) P(1,j) P(1,n)
D2 P(2,1) P(2,2) P(2,j) P(2,n)
P(i,1) P(i,2) P(i,j) P(i,n)
Dm P(m,1) P(m,2) P(m,j) P(m,n)
UD(i,j) Defenders Utility of Attackers choice
j given Defender chose i. P(i,j) Estimated
probability Attacker chooses j given Defender
chooses i.
3Defenders Action
EUD
D1 ¹D1 ? UD(1,j) P(1,j)
D2 ¹D2 ? UD(2,j) P(2,j)
¹Di ? UD(i,j) P(i,j)
Dm ¹Dm ? UD(m,j) P(m,j)
Which action should Defender take?
D argmaxi mDi
D maximizes expected utility
4Estimating Attacker Probabilities
- The estimation of P(i,j) seems very difficult as
it must account for - A1 The utility of outcome (i,j) to the attacker
- A2 The probability that the attacker will even
evaluate action j - Financial constraints
- Supply constraints
- Technological constraints
- Etc.
5?
- Estimate A1 and A2 separately
- Let UA(i,j) V(i,j) e(i,j)
- Random utility where e(i,j) describes the
uncertainly in estimating the attackers utility
for outcome (i,j) - V(i,j) is the point estimate for the attackers
utility (non-stochastic) - Let P(j 2 Ci) be the estimated probability that
action j is in the attackers choice set when
defender chooses action i
6Multinomial Choice Models
- Pi(j) P(Uj gt maxk?j Uk)
- P(Vj ej gt maxk?j Vk ek)
- Assume ej are independent with Type I extreme
value distribution (Gumbel Distribution) - ej EV1(j,µ)
7Type I Extreme Value R.V.s
- P1 If X EV1(,µ)
- then Xb EV1( b,µ)
- P2 If X EV1(X,µ) and Y EV1(Y,µ)
- then FX-Y(x-y)
- (1expµ(X- Y - (x-y)))-1
- P3 If Xi EV1(i,µ)
- then
- maxi Xi EV1(µ-1 ?expiµ, µ)
8Multinomial Logit Model
- Ignore P(j 2 Ci) for the moment
- Pi(j) P(Vj ej gt maxk?j Vk ek)
- Assume ej EV1(0,µ)
- Vjej EV1(Vj,µ) (from P1)
- Vjej maxk?j Vk ek
- EV1(µ-1 ?k?j expVkµ,µ)
- (from P3)
- Pi(j) P(Vj ej gt Vj ej)
- P(Vj ej - Vj ej lt 0)
- (1expµ(Vj - Vj))-1 (from
P2)
9Defenders Probability of Action j
- Further derivation leads to
- Hierarchical Multinomial Choice
-
10Defenders Action
- The expected utility for defender action i
becomes - ¹Di ? UD(i,j) Pi(j)
- And the optimal action for defender