New questions with the correlation coefficient - PowerPoint PPT Presentation

1 / 50
About This Presentation
Title:

New questions with the correlation coefficient

Description:

Fisher's Z-transformation: Z(r) will be normal. E.g., if r ... Concordancy and discordancy. t = p - p- p : Proportion of concordant. pairs in the population ... – PowerPoint PPT presentation

Number of Views:36
Avg rating:3.0/5.0
Slides: 51
Provided by: andras
Category:

less

Transcript and Presenter's Notes

Title: New questions with the correlation coefficient


1
New questionswith the correlation coefficient
2
Testing the H0 r r0 hypothesis
  • Under H0 r 0

3
In general
Fishers Z-transformation Z(r) will be normal
4
E.g., if r 0.80see MiniStat
5
Z(r) N(Z(r), sz) (sz )2 1/(n - 3) E.g.,
Z(0.80) 1.099 If n 10 (sz )2 1/7
6
H0 r r0
Under H0 Z will be N(0, 1)
7
Decision
-1.96 lt Z lt 1.96 Keep H0
Z -1.96 r lt r0
Z ³ 1.96 r gt r0
8
An example
H0 r 0.5 n 28, r 0.8
9
2. Interval estimation of r
For Z(r) C0.95 Z(r) 1.96sz (z1 z2)
For r Transform back C0.95 (r1 r2)
10
An example
n 28, r 0.8
C0.95(Z(r)) Z(0.8) 1.96/sz 1.099
1.96/5 (0.707 1.491) C0.95(r) (0.610
0.905)
11
3. H0 r1 r2
Under H0 ZN(0, 1)
12
Surprising correlations
(a) Wagners preference and number of socks (b)
Word proficiency and foot size
13
4. Partial correlation
X Y
Z
14
r 0.85
Y
r3 -0.20
20
r2 -0.54
15
10
5
0
X
0
5
10
15
20
r1 -0.61
15
By means of linear regression
X Xz Xres
Y Yz Yres
rXY.Z r(Xres,Yres)
16
Formula of theoretical partial correlation
coefficient
17
Formula of sample partial correlation coefficient
18
Two examples
0.64
0.46
X Y
X Y
0.80
0.80
0.80
0.80
Z
Z
rxy.z 0
rxy.z -0.50
19
Another two examples
0
0.10
X Y
X Y
0.60
0.60
-0.60
0.60
Z
Z
rxy.z -0.56
rxy.z 0.72
20
Comparing two dependent samples
21
Ss X Y Y - X 1. 4 1 -
2. 1 0 - 3. 2 0 -
4. 0 0 0 5. 3 7
6. 3 11 7. 4.5 16
22
Means and medians
X
Y
Mean
2.5
5.0
X lt Y
Median
3
1
X gt Y
23
Stochastic equality (equality in tendency)
P(X lt Y) P(X gt Y)
24
Meaningful null hypotheses
H0 E(X) E(Y)
H0 Med(X) Med(Y)
H0 P(X lt Y) P(X gt Y)
25
H0 E(X) E(Y)
  • One-sample t-test
  • Assumption normality
  • Robust alternatives
  • Johnson test
  • Gayen test

26
H0 Med(X) Med(Y)
  • Wilcoxon test
  • Assumptions
  • X and Y are continuous
  • Y-X is symmetric

27
If X and Y are symmetric Med(X)
Med(Y) and Med(Y-X) 0 are equivalent.
28
If X and Y are continuous Med(Y-X) 0 and P(X lt
Y) P(X gt Y) are equivalent.
29
H0 P(X lt Y) P(X gt Y)
  • Sign test
  • Assumptions
  • None
  • But, it is good if N is large

30
How to perform the sign test?
  • To be determined
  • n of X gt Y occurrences
  • n- of X lt Y occurrences
  • (t1 t2) region of acceptance

31
Decision in the sign test
  • t1 lt n lt t2 Keep H0
  • n t1 P(X lt Y) lt P(X gt Y) (Y lt X
    stochastically)
  • n ³ t2 P(X lt Y) gt P(X gt Y)
  • (Y gt X stochastically)

32
An example to the sign test
N 50 X Pulse rate before experiment Y Pulse
rate during experiment n 33 (incr.) n- 15
(decr.) In case of n 3315 48 and a
5 (t1-t2) (16-32) n ³ t2 P(X lt Y) gt P(X gt
Y)
33
Comparing two independent samples
34
X-sample Y-sample 0 1 1 2 8 3 X lt
Y (0 1), (0 2), (0 3), (12), (1 3)
X gt Y (8 1), (8 2), (8 3) n 5 (incr.)
n- 3 (decr.)
35
Means and medians
X
Y
Mean
3
2
X gt Y
Median
1
2
X lt Y
36
Stochastic equality (equality in tendency)
P(X lt Y) P(X gt Y)
37
Meaningful null hypotheses
H0 E(X) E(Y)
H0 Med(X) Med(Y)
H0 P(X lt Y) P(X gt Y)
38
H0 E(X) E(Y)
  • Two-sample t-test
  • Assumptions
  • normaliy, s1 s2
  • Robust variant
  • Welch-test

39
H0 P(X lt Y) P(X gt Y)
  • Mann-Whitney test (MW)
  • Assumption
  • s1 s2
  • Robust variants
  • Brunner-Munzel test (BM)
  • Fligner-Policello test (FP)

40
How to perform MW
xi rank yj rank 0 1 1
2.5 1 2.5 2 4 8 6 3
5 R1 9.5 R2 11.5
(t1 t2) Region of acceptance
41
Decision in MW
  • t1 lt R1 lt t2 Keep H0
  • R1 t1 Xlt Y stochastically
  • R1³ t2 X gtY stochastically

42
Monotonic relationship of two variables, X and Y
43
Deterministic monotonicity
Y
16
If X grows then Y grows too
12
8
4
0
X
0
1
2
3
4
44
Stochastic monotonicity
Y
16


If X grows then likely Y grows too

12



8



4








0
X
0
1
2
3
4
45
An example
Ss X Y 1 1 35 2
1.5 34 3 2 36 4 3 37 5
7 38 6 10 39
46
Rank data separately for X and Y
Ss X rank Y rank 1 1 1
35 2 2 1.5 2 34 1 3 2
3 36 3 4 3 4 37 4 5
7 5 38 5 6 10 6 39 6
47
Spearmans rank correlation (rS)Correlation
between ranksIn the above example r 0.91, rS
0.94
48
Discordancy
Concordancy
49
Concordancy and discordancy
Y
B

C
-
A
X
D
50
Kendall-s tau
p Proportion of concordant pairs in the
population p- Proportion of discordant pairs in
the population
t p - p-
Write a Comment
User Comments (0)
About PowerShow.com