Title: An Introduction to Macroeconometrics: VEC and VAR Models
1Chapter 13
- An Introduction to Macroeconometrics VEC and VAR
Models
Prepared by Vera Tabakova, East Carolina
University
2Chapter 13 An Introduction to Macroeconometrics
VEC and VAR Models
- 13.1 VEC and VAR Models
- 13.2 Estimating a Vector Error Correction model
- 13.3 Estimating a VAR Model
- 13.4 Impulse Responses and Variance
Decompositions
3Chapter 13 An Introduction to Macroeconometrics
VEC and VAR Models
413.1 VEC and VAR Models
513.1 VEC and VAR Models
613.1 VEC and VAR Models
713.2 Estimating a Vector Error Correction Model
813.2.1 Example
- Figure 13.1 Real Gross Domestic Products (GDP)
913.2.1 Example
1013.2.1 Example
1113.3 Estimating a VAR Model
- Figure 13.2 Real GDP and the Consumer Price Index
(CPI)
1213.3 Estimating a VAR Model
1313.3 Estimating a VAR Model
1413.4 Impulse Responses and Variance
Decompositions
- 13.4.1 Impulse Response Functions
- 13.4.1a The Univariate Case
- The series is subject it to a shock of size
? in period 1. -
1513.4.1a The Univariate Case
- Figure 13.3 Impulse Responses for an AR(1) model
(y .9y(1)e) following a unit shock -
1613.4.1b The Bivariate Case
1713.4.1b The Bivariate Case
1813.4.1b The Bivariate Case
1913.4.1b The Bivariate Case
- Figure 13.4 Impulse Responses to Standard
Deviation Shock
2013.4.2 Forecast Error Variance Decompositions
- 13.4.2a The Univariate Case
-
-
2113.4.2 Forecast Error Variance Decompositions
- 13.4.2b The Bivariate Case
-
-
2213.4.2 Forecast Error Variance Decompositions
- 13.4.2b The Bivariate Case
-
-
2313.4.2 Forecast Error Variance Decompositions
- 13.4.2b The Bivariate Case
-
-
2413.4.2 Forecast Error Variance Decompositions
- 13.4.2b The Bivariate Case
-
-
2513.4.2 Forecast Error Variance Decompositions
- 13.4.2c The General Case
- The example above assumes that x and y are not
contemporaneously related and that the shocks are
uncorrelated. There is no identification problem
and the generation and interpretation of the
impulse response functions and decomposition of
the forecast error variance are straightforward.
In general, this is unlikely to be the case.
Contemporaneous interactions and correlated
errors complicate the identification of the
nature of shocks and hence the interpretation of
the impulses and decomposition of the causes of
the forecast error variance. -
-
26Keywords
- Dynamic relationships
- Error Correction
- Forecast Error Variance Decomposition
- Identification problem
- Impulse Response Functions
- VAR model
- VEC Model
27Chapter 13 Appendix
- Appendix 13A The Identification Problem
28Appendix 13A The Identification Problem
29Appendix 13A The Identification Problem