A functional program: Collection of functions - PowerPoint PPT Presentation

1 / 28
About This Presentation
Title:

A functional program: Collection of functions

Description:

55. A functional program: Collection of functions ... if b(n-1) value is #f, eval bn; if #t, eval en, return that val. else ... (b1 e1) (b2 e2) ... (bn en) ... – PowerPoint PPT presentation

Number of Views:44
Avg rating:3.0/5.0
Slides: 29
Provided by: jeremy84
Category:

less

Transcript and Presenter's Notes

Title: A functional program: Collection of functions


1
Functional Programming
  • A functional program Collection of functions
  • A function just computes and returns a value
  • No side-effects
  • In fact No program variables whose values
    change!
  • A function body Mainly calls to other functions
  • Languages LISP, Scheme, ML, Haskell, ...

2
Logic Programming
  • Program just says what is needed, not how to
    compute it
  • The system figures out the how
  • DB systems are (sort of) logic programming
    systems
  • Languages Prolog
  • Logic programming is not very popular except as
    DBs

3
Functional Languages (Chap. 10)
  • Must provide
  • Suitable data types
  • Set of primitive functions
  • A notation for calling functions
  • Way to construct new functions by composing
    existing ones in different ways

4
Lisp/Scheme Data Types
  • Data Types Atomic and non-atomic S-expressions
    (symbolic exps.)
  • Atoms
  • Numbers (we use only integers)
  • Strings xyz, 34 etc.
  • Symbols (i.e., identifiers) XYZ, AB12,
    etc.Some important symbols t (denotes
    true written T in Lisp) f (denotes false
    written NIL in Lisp)

5
Lisp/Scheme Data Types (contd.)
  • Non-atomic S-expressions If s1 and s2 are
    s-expressions, so is (s1 . s2)
  • Important primitive functions
  • cons s1, s2 (s1 . s2)
  • car (s1 . s2) s1
  • cdr (s1 . s2) s2
  • cadr s car cdr s cadar s car
    cdr car s
  • Important Everything in LISP/Scheme is an
    s-exp.
  • Important Best to think in terms of how s-exps
    are stored internally binary trees (using
    pointers)

6
List Notation
  • List Notation
  • ( ) denotes NIL
  • (6) denotes (6 . NIL)
  • (6 5) denotes (6 . (5 . NIL))
  • (6 5 5) denotes (6 . (5 . (5 . NIL)))
  • ((1 . 2) 3) denotes ((1 . 2) . (3 . NIL))
  • ((1 . 2) (3 . 4)) denotes ((1 . 2) . ((3 . 4) .
    NIL))
  • In general
  • (s1) denotes (s1 . NIL) s1 "dot version"
    of s1
  • (s1 s2) denotes (s1 . (s2 . NIL))
  • (s1 s2 s3 ... ) denotes (s1 . (s2 . (s3 .
    NIL))) etc.

7
List Notation (contd.)
  • The Scheme/LISP interpreter converts everything
    to dot notation list notation is only for
    input/output
  • Convert
  • ((1 . 3) 2 4) ((1 . 3) (2 . 4)) ((1 . 3) (2
    4))
  • (1 . (2 . NIL)) ((1 . NIL) . (2 . NIL)) ((1 . 2)
    . NIL) (1 . (2 . 3)) ((1 3) (2 4))
  • Consider car, cdr, cddr etc. of ((1 . 2) (3 .
    4)), ((1 . 2) . (3 . 4)) etc.
  • car, cdr, cons are best understood in terms of
    how they manipulate s-expressions internally.

8
Built-in Functions
  • More functions
  • eq? x, y returns t or f if x, y are/are
    not same atomeq? t, f feq? f, f
    teq? f, 5 f arguments to eq?
    must be atoms
  • pair? x returns t if x is a "pair" f
    otherwisepair? (2 . 3) tpair? (2 . t)
    tpair? t fpair? () f
  • null? x returns t if x is () f
    otherwise

9
Built-in Functions (contd.)
  • Standard math functions (arguments must be
    numbers)
  • 10, -5 5
  • - 10, -5 15
  • 10, -5 -50
  • / 10, 5 2 / 10, 7 10/7
  • gt 10, -5 t
  • 10, -5 f
  • ... many others but we won't use most of them
  • Important We have not yet seen any Scheme
    programs
  • The above are just meanings of these built-in
    functions

10
Atoms, Parameters, Arguments
  • Important Atoms are used for three purposes
  • Constants numbers, t, f (we won't use
    string consts.)
  • Function names car, cdr, eq?, , gt, ...
  • Function parameters (in function definitions)
  • Important Distinction between parameters and
    arguments(also "formal parameters" and "actual
    arguments")

11
Defining New Functions
  • addUpList L return sum of nos. in L (a list
    of nos.)
  • addUpList L "design notation", not
    Lisp/Scheme
  • null? L ? 0
  • t ? carL, addUpList cdrL
  • addUpList (2 3 4) returns 9 how does it
    work?
  • nNil n if n is 4 return (NIL NIL NIL NIL)
  • nNil n
  • n, 0 ? NIL
  • t ? cons NIL, nNIL -n, 1
  • doubleUp s cons s, s what does it
    do?
  • length L should return length of list L
  • mysteryL nNil length L what does
    it do?

12
Scheme/Lisp "Programs"
  • Starting Scheme (on stdsun)
  • scheme48
  • ... welcome, ...
  • Type ,? for help
  • type in a Scheme expression the interpreter
    evaluates
  • it, outputs the value, waits for the next
    Scheme exp.
  • gt ,exit
  • Simplest Scheme expression constant atoms
  • scheme48
  • gt 655
  • 655

13
Scheme/Lisp Expressions
  • Function application Fa1, a2, a3, ..., an ?
    (F a1 a2 a3 ... an)The interpreter
    evaluates a1, a2, ..., an binds the
    resulting values to p1, p2, ..., pn, the pars of
    Fthen it evaluates the body of F (as a Scheme
    exp)
  • gt ( ( 2 3) ( 5 6) )
  • evaluates ( 2 3), ( 5 6), binds to pars of
    , then evaluates body of using values
    bound to pars when needed
  • gt (cons ( 2 3) ( 5 6) ) similar
    result
  • (5 . 30)
  • gt (cons A B) error! "unbound A, B"
  • gt (cons t f) okay! t, f evaluate to
    t, f

14
Quoted expressions
  • gt (quote A) Don't evaluate A
  • A
  • (quote ...) looks like a function call but it
    is not it can't be!
  • It is a form also "special form" only three
    special forms
  • gt (cons (cdr (A . B) ) (car (A . B) ) )
    Error!
  • gt (cons (cdr (quote (A . B)) ) (car (quote
    (A . B)) ) )
  • (B . A)
  • gt (cons (quote (cdr (A . B)) ) (quote (car (A
    . B)) ) ) ???

15
Conditional expressions (Another Special Form)
  • (cond (b1 e1) (b2 e2) ... (bn en) )
    each bi, ei is a Scheme/Lisp expression
  • To evaluateEvaluate b1 if value is t,
    evaluate e1, return that value
  • if b1 value is f, evaluate b2 if t, eval e2,
    return that val
  • if b2 value is f, evaluate b3 if t, eval e3,
    return that val
  • ...
  • if b(n-1) value is f, eval bn if t, eval en,
    return that val
  • else ... error!
  • (cond
  • ( (gt 5 3) 3 )
  • ( t (3 . 5) ) )
  • (cond
  • ( (gt 3 5) (cons 3 5) )
  • ( t (cons 5 3) ) )

16
Function Definitions (Sp. Form)
  • (define (F p1 p2 ... pn) ..body (Scheme
    exp.).. )
  • gt (define (silly p1 p2) 5)
  • ..okay.. or some such acknowledgment
  • gt (silly 10 20)5
  • gt (silly (10 . 20) (20 . 30)) Error!
  • gt (silly (cons 10 20) (cons 20 30)) 5
  • gt (silly (quote (10 . 20)) (cons 20 30)) 5

17
Defining new functions (contd)
  • xmembx, list is x a member of list?
  • null?list ? f
  • eq?x, carlist ? t
  • t ? xmembx, cdrlist
  • gt (define (xmemb x list) is x a member of
    list?
  • (cond
  • ( (null? list) f )
  • ( (eq? x (car list)) t ) quote
    list?
  • ( t (xmemb x (cdr list) ) ) ) )
  • no values returned
  • gt (xmemb 3 (quote (2 3 4)) )
  • t

18
Function Definitions (contd.)
  • equal x, y x and y may not be atoms
  • pair?x ? pair?y ?
  • equalcarx,cary ?
    equalcdrx,cdry
  • t ? f
  • t ? f
  • pair?y ? f why?
  • t ? eq?x,y
  • gt (define (equal x y)
  • (cond ( (pair? x)
  • (cond ... ) )
  • ( (pair? y) f )
  • ( t (eq? x y)) ) )
  • gt (define (atom? x) ...) ???

19
Defining new functions (contd)
  • xunions1, s2 union of atomic lists, less
    duplicates
  • null?s1 --gt s2
  • null?s2 --gt s1
  • t --gt xmembcars1,s2 --gt xunioncdrs1,
    s2
  • t --gt cons cars1, xunioncdrs1,
    s2
  • better
  • xunions1, s2
  • null?s1 --gt s2
  • null?s2 --gt s1
  • xmembcars1,s2 --gt xunioncdrs1, s2
  • t --gt cons cars1, xunioncdrs1, s2

20
Function Definitions (contd.)
  • addUpList L
  • null? L ? 0
  • t ? carL, addUpList cdrL
  • gt (define (addUpList L)
  • (cond
  • ( (null? L) 0 )
  • ( t ( (car L) (addUpList (cdr L) ) )
    ) ) )
  • .. okay ..
  • gt (addUpList (2 3 4) )
  • Error!
  • gt (addUpList (quote (2 3 4) ) )
  • 9 but how does it work?

21
Function Definitions (contd.)
  • nNil n
  • n, 0 ? NIL
  • t ? cons NIL, nNIL -n, 1
  • gt (define (nNil n)
  • (cond
  • (( n 0) (quote ()) ) why?
  • (t (cons '() (nNil (- n 1))) ) ) )
  • doubleUp s cons s, s
  • (define (dUp s) (cons s s) ) need to
    quote s?

22
Different styles in Lisp
  • maxListL returns max of number in
    non-empty list L
  • Functional
  • null?cdrL --gt carL
  • gtcarL, maxListcdrL --gt carL
  • t --gt maxListcdrL
  • Functional but better
  • null?cdrL --gt carL
  • t --gt bigger carL, maxListcdrL
    define bigger
  • imperative
  • maxListL max2carL, cdrL
  • max2x, L
  • null?L --gt x
  • gtx, carL --gt max2x, cdrL
  • t --gt max2 carL, cdrL

23
More functions
  • How do you obtain first element of a list?
  • How do you obtain the last element? watch out!
  • How do you append two lists? No, not just
    cons!
  • How do you reverse a list? best use imperative
    trick

24
How Lisp interpreter works
  • Five types of Lisp expressions ("programs")
  • Constants 4, 5, t etc. Evaluate to
    themselves 4, 5 etc
  • Symbols X, Y, etc. Look them up on the
    "association" list a-list.
  • Function application (F a1 a2 a3 ...
    an) F is a (built-in or user-defined) function
    that expects n parameters each ai is a Lisp
    expression Evaluate each ai bind that value
    aiv to pi, the corr. parameter, by
    adding (pi . aiv) to the a-list then evaluate
    the body of F

25
Lisp Exps./How they are eval'd (contd)
  • Quoted exp (QUOTE s) where s is any
    s-exp evaluates to s
  • Conditional (COND (b1 e1) (b2 e2) ... (bn en) )
    b1, b2, ... and e1, e2, ... are all Lisp
    expressions eval. b1, b2, ... to find the
    first bj that eval's to non-NIL eval corr. ej
    return its value if all bi's eval to NIL,
    error!
  • Fn. def. (DEFINE (F p1 ... pn) fe) F is new
    fn., p1, ..., pn its parameters, fe the body
    save def. on "d-list".

26
Lisp Interpreter (partial) (in Lisp!)
  • Three key functions
  • eval evaluates a Lisp-exp.
  • evcon evaluates a conditional Lisp-exp.
  • apply applies a function to given set of
    arguments
  • interpreterexp, dList evalexp, NIL, dList
    why?
  • evconpairs, aList, dList
  • null?pairs --gt "error"!
  • evalcaarpairs,aList,dList --gt
    evalcadarpairs,aList,dList
  • t --gt evconcdrpairs, aList, dList

27
Lisp Interpreter (partial) (contd.)
  • eval exp, aList, dList
  • atom?exp --gt int?exp --gt exp
  • eq?exp,t --gt t
  • eq?exp,f --gt f
  • in?exp,aList --gtgetValexp,aList
  • t --gt "unbound variable!"
  • atom?carexp --gt
  • eq?carexp,QUOTE --gt cadrexp
  • eq?carexp,COND --gt
  • evconcdrexp, aList, dList
  • t --gt applycarexp,
  • evliscdrexp,aList,dList,
  • aList, dList
  • t --gt "error!"

28
Scheme vs. LISP
  • Differences (with LISP)
  • t and f for "true" and "false" Lisp uses T,
    NIL for this
  • NIL always written as () and is not a normal
    atom In fact, Scheme talks of "pairs" vs.
    "non-pairs", not "atoms" and "non-atoms"
  • Scope rule
  • What "scope rule" means
  • How it works in Lisp/Scheme
  • Elimination of some imperative features
Write a Comment
User Comments (0)
About PowerShow.com